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1 Introduction

Humans frequently face trade-offs between doing a task faster or better. For example,
imagine an employee in a company working on a task. The faster this employee finishes
their task, the better for them, as this increases praise by their manager and the chance
of a promotion. At the same time, the more time the employee spends on the task, the
higher the quality of the work, which similarly increases the possible rewards. Thus, the
worker must decide how much time they spend on their task to optimally balance the
potential reward from finishing the task fast(er) or with high(er) accuracy.

Such trade-offs between speed and accuracy are not restricted to work settings.
Extensive literature in psychology and neuroscience investigates human behavior in
speed-accuracy trade-offs in perception and motor-control tasks (see the review in Heitz
(2014)). This literature suggests that humans typically trade off speed and accuracy opti-
mally in the presence of perceptual and motor uncertainty and choose time to maximize
expected payoffs. This optimal behavior is documented in tasks that require humans to
identify the direction of motion of dots (Bogacz et al., 2006), to hit a target (Dean et al.,
2007), to plan a precise movement (Trommershäuser et al., 2006), or to compare visual
magnitudes (Bogacz et al., 2010; Desender et al., 2019).

Whether these findings generalize to work environments is questionable. Decisions
at the workplace are often complex and require cognitively demanding skills (Hanushek
et al., 2015), while perception andmotor-control tasks rely on “lower-level” cognitive pro-
cesses. Thus, while humans often solve motor-control and perception tasks automatically
and instinctively, their decisions in complex work settings are frequently more deliberate.
For such deliberative decision-making, extensive literature in economics has established
that humans seldomly make payoff-maximizing choices if they face risk and uncertainty
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1974, 1992) and often hold biased
beliefs, e.g., about their ability (Moore & Healy, 2008). In turn, these biases frequently
affect decision-making by professionals in multiple work environments (see e.g., DellaV-
igna, 2009; Hoffman & Burks, 2020; Malmendier & Tate, 2005). While speed-accuracy
trade-offs in motor-control tasks are solved simultaneously with the task, workplace en-
vironments often contain a second type of time choice, where humans have to plan time
prospectively, i.e., before working on a task. In these prospective situations, workers must
assess and state the time required to finish a task, e.g., to their supervisor, other team
members, or customers. These prospective time choices are often strongly affected by
biases, such as an overoptimistic forecast of completion time, a phenomenon known as
the “planning fallacy” (see e.g., Buehler & Griffin, 2015; Buehler et al., 1994).

It thus remains unclear how people resolve speed-accuracy trade-offs in more com-
plex, deliberate, or prospective decision environments. How does a person choose time
in a cognitively demanding task? Why do two similarly productive persons spend or plan
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time differently for the same task? What role do behavioral biases play in time decisions
in such trade-offs? These questions are poorly understood so far and this paper aspires
to take a first step to understanding them better.

In this paper, we investigate time choices in speed-accuracy trade-offs in a cognitively
demanding task. Specifically, we ask whether time choices in speed-accuracy trade-offs
are affected by individuals’ subjective beliefs about their ability and their uncertainty
attitudes. Furthermore, we investigate if these effects differ between a deliberate envi-
ronment, where time choices are made prospectively, and a simultaneous decision envi-
ronment, where time is chosen while working on a task.

To study these questions, we propose a simple theoretical framework where an agent
solves a speed-accuracy trade-off. Building on two-step models (Fox & Tversky, 1998; G.
Wu & Gonzalez, 1999), we incorporate subjective beliefs about performance and uncer-
tainty attitudes into an agent’s decision-making process. Based on this framework, we
derive hypotheses on how time choices are affected by the cost of time, as well as partici-
pants’ performance, subjective beliefs, and uncertainty attitudes. We additionally derive
a hypothesis on the difference between the determinants of time choices in prospective
and simultaneous decision environments based on literature from psychology and neu-
roscience.

To test our predictions, we design a two-part laboratory experiment around a novel
“cognitive visual search task”. In the first part of the experiment, we measure time-
dependent performance, beliefs about performance, and uncertainty attitudes toward
working on the task in incentive-compatible ways. In the second part, we introduce a
speed-accuracy trade-off in the visual search task by implementing a reward scheme
where rewards depend on the correctness of the solution and time choices. We elicit
participants’ time choices in four situations, which vary along two dimensions (i.e., we
implement a within-participant 2× 2 design). The first dimension is the decision envi-
ronment. We implement a “prospective” environment, in which participants have to pre-
specify a time before working on the task, and a “simultaneous” environment, where
participants make their time choices while working on the task. The second dimension
is the cost of time, where we change the reward scheme and implement a high and low
cost of time. These two dimensions – the decision environment and the cost-of-time –
capture distinct elements of different work scenarios. We, therefore, investigate the in-
fluence of subjective beliefs and uncertainty attitudes along each of our two dimensions
of the choice environment.

The main finding of this paper is that subjective beliefs and uncertainty attitudes (in
addition to the cost-of-time and individual performance) predict how people solve speed-
accuracy trade-offs and choose time in the prospective decision environment. This is in
line with the theoretical framework. Conversely, but in line with the literature-based
hypothesis, we do not find an association between either subjective beliefs or uncer-
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tainty attitudes and time choices in the simultaneous decision environment, while in-
dividual performance and cost-of-time remain significant predictors. This suggests that
humans rely on their subjective beliefs and uncertainty attitudes to make prospective
time choices in situations with speed-accuracy trade-offs, while these factors seem to
play no significant role when the trade-off is solved simultaneous to the actual task. In
an additional analysis, we investigate how subjective beliefs and uncertainty attitudes
affect participants’ payoffs through their time choices. We find that uncertainty aversion
and underconfidence are associated with lower payoffs in the prospective high cost-of-
time environment.

We derive a second set of results from a structural approach. We calculate two
would-be payoff-maximizing time choices to the speed-accuracy trade-off, each based
on a different objective function. The first time choice (which we call rational) is based
on an objective function that solely incorporates participants’ performance, and the sec-
ond (which we call behavioral) additionally incorporates participants’ subjective beliefs
and uncertainty attitudes. We find that the correlation between participants’ actual time
choices and the behavioral predictions is larger compared to the rational predictions in
the prospective decision environment. However, the opposite is true for the simultaneous
decision environment. A careful analysis of the payoffs provides suggestive evidence that
participants fail to implement the rational time choice and therefore forego payoffs. In-
stead, they seem to earn payoffs as predicted by the structural behavioral approach. This
is tentative evidence that peoplemaximize expected payoffs according to their behavioral
understanding of the speed-accuracy trade-off.

Our paper and its findings relate to several distinct literatures in economics. The
first literature investigates decision times in economic choices (see Spiliopoulos & Ort-
mann, 2018, for a review). We connect to two distinct sub-branches of this literature.
The first sub-branch connects decision times with economic decision-making under risk
(Kirchler et al., 2017; Kocher et al., 2013; Rubinstein, 2013). This literature so far has
produced mixed results: While Rubinstein (2013) finds that higher risk-taking correlates
with lower decision times, Kocher et al. (2013) find no impact of time pressure on risk
attitudes (for lotteries in the gain domain). In contrast to both, Kirchler et al. (2017)
observe that lower decision times decrease risk-taking. While we do not aim to reconcile
these mixed results, we contribute a new angle to this discussion: Our results suggest
that uncertainty attitudes might not only affect the outcome of decision-making but that
they might already influence the endogenous choice of decision time itself.

The second sub-branch of this literature investigates the allocation of decision time.
Chabris et al. (2009) identify that people allocate decision time according to cost-benefit
principles when making value-based choices between smaller-and-sooner versus larger-
and-later payments and spend less time on their choices when the differences in value
between the options are large. In contrast, Oud et al. (2016) find evidence for “irrational”
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time allocation, i.e., that people take too much time for choices between food options
when the options offer similar value. Hausfeld and Resnjanskij (2018), instead, do not
find conclusive evidence for irrational time allocation in lottery choices and propose
that decision-makers trade-off decision quality and decision speed when the opportunity
cost of time is high. We provide two new perspectives to this discussion: First, instead
of studying value-based decision-making or lotteries, we highlight the importance of
time allocation in a cognitively-demanding task aiming to resemble key characteristics
of work-related environments. Second, we provide evidence that participants seem to
act according to rational considerations in a simultaneous decision environment when
deciding how much time to spend to solve a problem.

Our study is also related to a literature investigating the origins of the planning fal-
lacy. Kahneman and Tversky (1982) propose that the planning fallacy originates in the
human tendency to rely on intuitive “internal judgments” when planning a project. These
intuitive judgments neglect information about other similar projects and their comple-
tion time. In contrast to this view, Brunnermeier et al. (2008) develop a model where
the planning fallacy results from agents’ optimal reaction to their distorted subjective
probabilities. They propose a theoretical model, review existing empirical evidence, and
largely find support for their model. We provide new evidence that planned actions in-
deed depend on subjective and possibly inaccurate estimates of probabilities and thus
support the interpretation by Brunnermeier et al. (2008). The discussion of the origins of
the planning fallacy is also related to a recent interest in economics to understand the dif-
ferences between planned and actual attention. Avoyan et al. (2023) find that planned
attention (i.e., a pre-specified time budget for a strategic game) and actual attention
(i.e., how long people then look at a specific game) do not coincide. They investigate
this disparity and find that salient features of the games (e.g., payoff numbers) affect the
planned attention, while their actual strategic complexity determines actual attention.
We add to this by showing that planned time choices are likely susceptible to biased,
subjective interpretations of the decision problem.

Finally, we relate to economic literature, which investigates the time usage of persons
(Aguiar & Hurst, 2007; Aguiar et al., 2012, 2013; Becker, 1965; Goldszmidt et al., 2020;
Juster & Stafford, 1991; Stratton, 2012). This literature highlights the importance of the
opportunity cost or the value of time for decision-making, e.g., in households’ decisions to
substitute between market and non-market activities, for workers searching for a job or
deciding how many hours of labor to supply. To measure the value of time, this literature
often relies on people’s observed choices and subsequently uses those measures to assess
the possible time-saving benefits of policy interventions (Goldszmidt et al., 2020). Our
results suggest that economic agents’ perception of their opportunity cost or value of
time are likely influenced by behavioral factors, such as overconfidence in their ability to
find a job or to earn a certain amount of money given an input of work hours. Our results
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– interpreted in a broader sense – suggest that measures of the value of time solely based
on observed choices may provide a skewed picture of the actual underlying valuation of
time.

The remainder of this paper is structured as follows: Section 2 introduces our theoret-
ical framework and derives hypotheses. Section 3 describes the experiment, and Section
4 introduces different measures of performance, subjective beliefs about performance,
and uncertainty attitudes and provides empirical evidence on their distribution. The fol-
lowing two sections provide reduced form (section 5) and structural (section 6) results
on the relation between the (behavioral) measures, time choices, and payoffs. Section 7
concludes.

2 Theoretical Framework

This section presents a simple theoretical model demonstrating the economics of time
choices in a speed-accuracy trade-off. In our model, agents choose how much time they
take to solve a given task to maximize a payoff function. We assume that this payoff
function contains two components. The first component captures an agent’s performance
(or accuracy) in a given task which we model as the time-dependent probability p(t)

that an agent solves a task correctly. We assume that this probability is concave and
strictly increases in time (i.e., p′(t)> 0 and p′′(t)≤ 0). The second component is a reward
function y(t), which specifies the time-dependent reward for solving the task. We assume
that agents solve the following optimization problem:

t∗ = argmaxtΠ(t) = p(t)y(t) (1)

where t is the main choice variable and t∗ the optimal amount of time that maximizes
payoffs. This general framework does not yet contain a speed-accuracy trade-off without
a more restricted definition of y(t). In the real world, time is a costly resource, and the
rewards for solving a task are often only paid if it is solved correctly or to a sufficient
threshold. Therefore, we assume the following simple reward function:1

y(t) =

¨

Y − c(t) if task is solved correctly and Y > c(t)

0 otherwise
(2)

In this reward function, Y describes a fixed maximally possible reward for solving a
task and c(t) the cost of time, which we assume to be concave and strictly increase in time
(i.e., c′(t)> 0 and c′′(t)≤ 0). c(t) can thus be understood to encompass both the labor or

1 We could also assume an accuracy threshold, which needs to be crossed, or time-dependent benefits.
We focus on the binary outcome of a correctly or incorrectly solved task for simplicity of exposition.
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effort cost of solving a task, as well as the opportunity cost of time. This reward function
introduces the central tension: To maximize (expected) payoff, an agent needs to solve
the task as fast as possible, as the reward reduces in time, but as accurately as possible,
as the reward can only be gained by providing an accurate (i.e., correct) solution. This
creates incentives for both fast and accurate solutions, and the optimal action of an agent
is to implement the unique time choice t∗ that maximizes equation 1.2

How does this optimal time choice change when the cost of time c(t) in equation
2 changes? For ease of exposition, assume that two situations exist such that c1(t)>

c2(t) ∀ t. The first situation could resemble a worker who needs to respond quickly to
a production line fault to prevent high costs. In contrast, the second could resemble
answering an unimportant email later and entails only negligible costs for the same
worker. These different costs of time imply different optimal time choices and generate
the first general prediction3:

Prediction 1: If the cost of time is high (low), an agent chooses little (more) time to
solve the task.

How does the optimal time choice depend on an agent’s performance p(t)? Assume
that two (otherwise identical) agents i and j differ in their ability irrespective of time, such
that p(t)i > p(t)j ∀ t. Thus agent i has a higher performance than agent j and equation 2
implies that t∗i < t∗j . This means that the optimal time choice for agent i is lower compared
to agent j and generates the second prediction:

Prediction 2: A more (less) performant agent chooses less (more) time.
In contrast to the fully optimal decision maker, we now introduce a behavioral agent

with two behavioral characteristics: (1) subjective beliefs and (2) uncertainty attitudes.
These two characteristics are important drivers of choices in decisions over uncertain
events, where objective probabilities are unknown to the decision-maker (see e.g., Fell-
ner, 1961), and the outcome of any choice is inherently uncertain. We follow the previous
literature on two-step models that incorporate both behavioral characteristics in the for-
mulation of overall decision weights in the presence of uncertainty (Fox & Tversky, 1998;
Kilka &Weber, 2001; Tversky & Fox, 1995; Wakker, 2004; G. Wu & Gonzalez, 1999). The
first step is a translation of events (i.e., how likely is a correct solution with time t) into
subjective probability judgments. The second step is mapping the subjective probabilities
into decision weights. The first step captures our notion of over-/underconfidence and
the second of uncertainty attitudes.

In the first step, a behavioral agent replaces p(t) with a subjective belief b(t). Impor-
tantly, in our task, only two outcomes exist: E a correct solution and ¬E its complement.
Therefore, we shorten b(E|t) to b(t) for brevity and define this as the subjective belief of a

2 See Appendix A.3.1 for a formal proof of the uniqueness of the maximum.
3 We discuss the generality of all predictions in Appendix A.3.2.
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correct solution conditional on time t.⁴ We do not impose any assumptions about the ori-
gin, formation, and shape of subjective beliefs, as many mechanisms and specifications
are possible.⁵.

In the second step, an agent weights the subjective probabilities b(t) by a weighting
function w(·), which reflects attitudes towards the time-dependent probabilities with
which the rewards for a correct solution can be obtained (c.f. Fox & Tversky, 1998; Kilka
& Weber, 2001; Tversky & Fox, 1995). Such probability weighting is a well-established
feature in the domains of risk and uncertainty (Abdellaoui et al., 2005; Gonzalez & Wu,
1999; L’Haridon & Vieider, 2019; Li et al., 2018; Trautmann & van de Kuilen, 2015;
Tversky & Kahneman, 1992; Wakker, 2010), where agents typically overweight small
and underweight large probabilities.⁶

Jointly, both subjective beliefs and probability weighting imply that behavioral agents
maximize a modified behavioral version of equation 2:

tb = argmaxtΠ
b(t) = w(b(t))y(t) (3)

This implies two new predictions. First, consider an agent who overestimates their
ability, i.e., b(t)> p(t) ∀ t. Maximizing 3 results in a behavioral time choice tb < t∗. This
is because the agent overestimates their performance at a given task and thus decides to
invest less time. This is Prediction 3:

Prediction 3: An over(under)estimating agent chooses less (more) time.
Similarly, consider an agent who consistently underweights subjective probabilities

by someweighting function, i.e., w(b(t))< b(t) ∀ t. Compared to an “uncertainty-neutral”
agent (i.e., for whom w(b(t))= b(t) ∀ t), this agent’s time choice is larger, i.e., tb > t∗. In
other words, an uncertainty-averse agent invests more time to increase the probability
of success, as they undervalue a given subjective probability b(t). This is Prediction 4:

Prediction 4: An over(under)weighting agent chooses less (more) time
The presented theoretical framework and our hypotheses predict that time choices,

as solutions to the maximization problem, are not directly affected by the decision envi-
ronment for otherwise mathematically equivalent trade-offs. However, this might not be

4 Similar to Wakker (2004, p. 237) we do not impose additivity as a condition for b(t), i.e., b(E|t)+
b(¬E|t) 6= b(S|t), where S represents the sample space of outcomes.

5 For example, one mechanism could be general over- or underconfidence, due to an agent’s tendency to
over-/ underestimate their own ability (Moore & Healy, 2008; Moore & Schatz, 2017). Alternatively,
cognitive approaches suggest the potential for insufficient adjustment away from over- or underopti-
mistic defaults due to limited attention (e.g., Gabaix, 2019), and psychological research demonstrates
effects of the difficulty of a task on overconfidence (e.g., Lichtenstein & Fischhoff, 1977)

6 Similar to subjective beliefs, we do not impose any assumptions about the source of probability weight-
ing, but recent evidence suggests that cognitive factors could determine weighting behavior, such as a
compression of probabilities towards mental defaults of 50:50 due to cognitive noise (Enke & Graeber,
2023), or a mental coding of probabilities in log-odds (Zhang & Maloney, 2012).
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the case. A small literature in cognitive science investigates differences between motor-
tasks and mathematically equivalent economic lottery tasks (Trommershäuser et al.,
2008; S. W. Wu et al., 2009). This literature finds that participants can solve motor-task
tasks nearly optimally but are affected by probability weighting and thus fail to maximize
their payoff in the equivalent lottery choices. This suggests that solutions to maximiza-
tion problems depend on how trade-offs are being solved and that behavioral factors
could play a more critical role in deliberate choice environments than when choices are
made intuitively.

The exact reasons for this discrepancy are not yet fully explored. One potential ex-
planation relates to the time available to make choices. In typical lottery tasks, people
can deliberate and weigh the options before making a choice. In contrast, people have
to make choices more intuitively and respond quickly in typical motor tasks. Research in
psychology suggests that humans use simpler decision rules and heuristics and change
their information acquisition patterns under time pressure (Payne et al., 1996; Rieskamp
& Hoffrage, 2008; C. M. Wu et al., 2022). This may leave less room for subjective inter-
pretations of the decision problem and lead to seemingly more rational choices. A second
possible explanation stems from a literature in psychology that shows that participants
choose different amounts of time when planning a task prospectively, compared to choos-
ing time while working on the task. This is known as the “planning fallacy” (Buehler et
al., 1994) and describes the phenomenon that humans typically overestimate their fu-
ture ability and thus underestimate the time required to complete (or reach a particular
performance in) a future task (see the review in Buehler & Griffin, 2015). Overall, this
suggests that time choices and their determinants likely depend on the decision environ-
ment. Subjective considerations, such as probability weighting or assessments of ability,
are more likely to affect time choices in environments where time is planned prospec-
tively. These effects should be weaker when time is chosen while working on the task.
This leads to an additional and literature-based prediction:

Prediction 5: Overconfidence and overweighting affect time choices more strongly in
prospective decision environments compared to time choices made while solving a task.

3 The Experiment

We designed an experiment around a “cognitive visual search task” to test our predic-
tions. This task allows us to easily measure the relevant participant-level characteristics
and implement a highly salient speed-accuracy trade-off. We test our theoretical pre-
dictions in a within-subject design for different decision environments and cost-of-time
specifications, which we describe in more detail below.
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3.1 Experimental Design

Part 1

Stage 1: Measuring Performance
Measure performance of participants for each t ∈ (2, 3, 4, 5, 6 sec) in 50 rounds per time condition.

Stage 2: Measuring Beliefs
Elicit beliefs about absolute performance in Stage 1 for each t ∈ (2, 3, 4, 5, 6 sec).

Stage 3: Measuring Uncertainty Attitudes
Elicit certainty equivalents for each t ∈ (2, 3, 4, 5, 6 sec). Order randomized.
Implement decisions for each t in 10 rounds of the task.

Part 2

Stage 4: Time Choices in Speed-Accuracy Trade-o�s

Order of high and low cost-of-time randomized between subjects.

High cost-of-time
(1) Prospective (2) Simultaneous

Low cost-of-time
(1) Prospective (2) Simultaneous

(1) Prospective
a. Elicit subjects’ prospective time choice.
b. Implement time choice in 40 tasks.

(2) Simultaneous
a. Measure time taken in 40 rounds of the simultaneous task.

Stage 5: Questionnaire

Figure 1. Outline of the experiment

The experiment consists of two parts (see Figure 1). In the first part, we elicit par-
ticipants’ time-dependent performance, subjective beliefs about performance, and un-
certainty attitudes. In the second part, we introduce the speed-accuracy trade-off and
observe participants’ time choices in two decision environments and for two cost-of-time
specifications. At the beginning of part one and part two, participants have training
rounds to familiarize themselves with the task. The experiment concludes with a ques-
tionnaire. We first introduce and describe the main task before describing the experi-
ment’s structure and the experimental implementation.

Main Task. In the main task of our experiment, participants need to select the two-
digit Arabic number with the highest value in a 4× 4 table of 16 numbers in a certain
amount of time (see Figure 2). The experimental screen shows the remaining time as a
decreasing bar over the table and the reward for a correct and incorrect solution below.
We sample the numbers in the table such that the task always has similar difficulty across
repetitions.⁷ Once a participant selects a cell in the table, it is highlighted in yellow. Par-
7 Accordingly, the 16 values in the table are sampled in the following manner: Firstly, we sample a solu-

tion, such that 41≤ solution≤ 90. Secondly, we sample the remaining 15 numbers by simple random
sampling without replacement from [solution− 31, solution− 1]. The 16 values are then randomly
placed on the table. See Appendix A.4 for a more thorough explanation of the sampling mechanism
of the matrices for each experimental stage.
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ticipants can change their selection as long as there is time available. When the time runs
out, the currently selected cell is automatically submitted as the participant’s answer.⁸

Figure 2. Main experimental task

We designed this task to combine the advantages of classical paradigms used to inves-
tigate speed-accuracy trade-offs with a more cognitively demanding task that captures
relevant aspects of economic decision-making. Similar to classical tasks in cognitive sci-
ence (such as random-dot kinematograms, motor-control tasks, or goal-directed move-
ment tasks (see Heitz, 2014, for a review), participants can learn our task extremely
fast and do many repetitions in a reasonably short amount of time, allowing us to col-
lect multiple data points and get a robust estimate of their time-dependent performance.
However, our task is distinct from classical paradigms in one crucial area: Instead of re-
lying on intuition, automatic responses, or hand-eye coordination (requiring very fast
time choices within a few milliseconds), our task is cognitively more demanding and
requires both working memory capacity and (numerical) cognition. Our task, therefore,
requires skills that are essential requirements and determinants of performance on the
job in many occupations (M. Brown et al., 2020; Corgnet et al., 2015; Hanushek et al.,
2015).

Stage 1: Performance. In stage one of the experiment, we measure participants’ time-
dependent performance in the main task. More specifically, we fix the time and reward
scheme and measure participants’ performance in 2, 3, 4, 5, and 6 seconds in 50 tasks
each. Participants get a payoff of 100 points for each correctly solved task and 0 points

8 This does not yet implement a speed-accuracy trade-off without time costs. We discuss how we imple-
ment the speed-accuracy trade-off in our description of the second part of the experiment.
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if they do not select the correct solution before the allocated time has run out. The 250
tasks are divided into five rounds, and each round is divided into five blocks. Each block
consists of ten tasks with a constant fixed time (i.e., one block contains ten tasks with
either 2, 3, 4, 5, or 6 seconds each). Overall, stage one adheres to the following structure:

10 tasks with 6 seconds
︸ ︷︷ ︸

Block 1
10 × 5s
︸ ︷︷ ︸

Block 2
10 × 4s
︸ ︷︷ ︸

Block 3
10 × 3s
︸ ︷︷ ︸

Block 4
10 × 2s
︸ ︷︷ ︸

Block 5
︸ ︷︷ ︸

Round 1

10 × 6s
︸ ︷︷ ︸

Block 6
. . . 10 × 2s

︸ ︷︷ ︸

Block 10
︸ ︷︷ ︸

Round 2

. . . . . . 10 × 2s
︸ ︷︷ ︸

Block 25
︸ ︷︷ ︸

Round 5

Before the first task in each block, participants see a countdown, followed by a fix-
ation cross in the middle of the screen (see Figure A11). After each block, participants
take a small break of ten seconds and an extended break of up to two minutes after each
round (i.e., after 50 tasks).

Stage 2: Beliefs. In the second stage, we elicit participants’ belief distribution about
their performance for each fixed time in stage one (2,3,4,5,6 seconds) using a ball al-
location task (see Figure A8 for a screenshot of the task).⁹ In each task, participants
allocate 100 virtual balls into ten bins. Each bin represents an interval of five correctly
solved tasks (e.g., the first bin represents between zero and five correctly solved tasks,
the second bin between six and ten correctly solved tasks, etc.), and each ball represents
one percentage point of the belief distribution. By distributing 100 balls across all bins,
subjects report their belief distribution about their performance in stage one. Participants
do five ball allocation tasks (one for each fixed time from stage one), which are unan-
nounced, and the instructions are only presented on-screen. We incentivize each of the
five ball allocation tasks individually according to the randomized quadratic scoring rule
(Hossain & Okui, 2013; Schlag & van der Weele, 2013) similar to S. Chen and Schildberg-
Hörisch (2019). Accordingly, participants can win a fixed amount of 250 points for each
ball allocation task in a binary lottery. The probability of winning the prize increases in
the number of balls a participant allocates to the bin that contains the actual number of
correctly solved tasks.1⁰

We chose to elicit belief distributions, as it is unclear how humans rely on their belief
distribution (e.g., on which moments) when asked for a point estimate (Engelberg et al.,
2009). Eliciting the full distribution provides a richer data set and allows us to investigate
different moments and measures of centrality. The approach to elicit belief distributions
instead of point predictions is an increasingly popular feature of recent experimental

9 This task was first introduced in surveys by Delavande & Rohwedder (2008, 2011) and recently applied
in incentivized experiments by Drerup et al. (2017), and S. Chen and Schildberg-Hörisch (2019).

10 We calculate an integer W =
∑10

j=1(bj − 100×1j)
2 for each individual and every ball allocation task. bj

captures the number of balls in bin j, and 1j is an indicator function that is equal to 1 if bin j contains
participants’ actual performance. We then draw a random integer (H) from the uniform distribution
with the bounds 0 and 20, 000. If W is higher than H, the participant gains a payoff of 250 points and
0 otherwise.
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papers (Bruhin et al., 2018; S. Chen & Schildberg-Hörisch, 2019; Crosetto & Haan, 2022;
Eyting & Schmidt, 2021).

Stage 3: Uncertainty Attitudes. In the third stage, we elicit participants’ certainty
equivalents for each fixed time (2,3,4,5,6 seconds) and the same reward scheme as in
stage one using choice lists. Participants work on ten tasks for each fixed time in this
stage, but they choose the payment scheme for these tasks themselves. For each fixed
time, participants choose the payment scheme from a table that contains 21 rows (see
screenshot A9 in Appendix A.6.3). In each row, participants choose between payment
scheme A – which is the same as in stage one (i.e., 100 points for a correct answer and
0 otherwise) – and scheme B – which always yields a fixed reward, regardless of the
correctness of their solution. The fixed reward increases by five points from 0 to 100
points in each row. Similar to previous studies (e.g., Enke & Graeber, 2023; Gonzalez
& Wu, 1999; Oprea, 2022), we enforce consistency of choices and allow only a single
switching point in the entire table, i.e., participants can switch at most once between
scheme A and B. In addition, we implement an auto-completion for the choice lists to
ease elicitation further: When a participant chooses scheme B in one row, the computer
fills all preceding rows with scheme A and subsequent rows with scheme B. Participants
can revise the switching point suggested by the computer and have to confirm their
final choice. At the beginning of stage three, participants answered five comprehension
questions about this mechanism.

After participants fill out the choice lists for all fixed times (order randomized), they
solve 50 tasks, 10 for each time. Participants’ reward scheme for each time is determined
by randomly drawing one row of the associated choice list and implementing this choice.
When participants choose the safe amount in the drawn row, they still see the ten tasks,
but their reward remains independent of their answer. We made this design decision to
minimize the effect of participants wanting to finish the experiment quicker, not wanting
to work on the task, or wanting to relax.11 Participants see the randomly drawn row, their
choice in that row, and the resulting payoff scheme before working on the ten tasks for
each time.

Stage 4: Time Choices in Speed-Accuracy Trade-offs. In the fourth stage, we imple-
ment a speed-accuracy trade-off in our task and elicit participants’ time choices. More
specifically, we change the (so far fixed) reward scheme into a time-dependent reward
function, which reduces the reward for a correct answer the longer a participant chooses

11 In fact, even for the lowest time (2 seconds), only 3% of participants choose the safe reward in all rows.
This provides evidence that participants try to optimize their payoffs rather than minimize their time
working on the task. Furthermore, in the implementation stage, participants selected an answer in
86.4% of the tasks in the safe payment scheme (B) (versus 97.9% in payoff scheme A). This indicates
that choices for B are not driven by the desire to relax.
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to work on a task. Facing this reward function, participants have to solve a speed-accuracy
trade-off, where higher time choices simultaneously decrease – due to the cost of time –
and increase – due to the higher accuracy or performance – their (expected) reward. We
choose the following easily understandable piecewise linear reward function:

y(t) =

¨

150 − κt if task is solved correctly and t < 150
κ

0 otherwise
(4)

This function is equal to the reward function in equation 2 with a fixed maximum
payoff Y of 150 points and a linear function for the cost of time c(t), where each second
reduces the reward by κ points.12

We implement two cost-of-time parameters κ to test Prediction 1. We predicted that
in situations where the cost of time is low, participants take relatively more time than in
situations where the cost of time is high. We therefore implement a high (κ= 30) and low
(κ= 10) cost-of-time. In the low cost-of-time setting, the reward is equal to the previous
stages (i.e., 100 points) when taking 3.33 seconds to answer correctly and equal to 0
after 10 seconds. In the high cost-of-time setting, these times are halved, and participants
get a reward of 100 for solving the task in 1.67 seconds and 0 if they do not select the
correct answer within 5 seconds. We randomize the order of the two cost-of-time settings
between participants.

We introduce two different decision environments that vary how participants choose
the time to work on our task. We call the first the “prospective” and the second the
“simultaneous” environment.

In the prospective environment, participants choose the amount of time for 40 tasks
ex-ante before working on the tasks. They enter their choice via a slider, which updates a
table where participants see the payoffs from a correct (and incorrect) answer. Additional
to the reward table, a “simulation area” below the slider allows participants to simulate
their time choice. The simulation area contains a progress bar – similar to all previous
tasks – that updates live to their chosen time. Participants can start a timer simulation,
where the progress bar simulates the time for one task. We chose this feature to maximize
the salience of the trade-off. The decision screen is presented in Figure 3 a).

In the simultaneous condition, participants decide on the amount of time for each
task while solving the task by choosing when to submit their final answer. We alter the
progress bar for this environment to show the remaining points for a correct answer
instead of the remaining time. The speed of the progress bar is determined by the cost
of time and the maximum amount of points. Participants select an answer by clicking on
a cell and submit their answer by clicking on an already selected cell (see Figure 3 b) for
a screenshot of the decision screen).
12 While we could use a more complex reward function (e.g., a logarithmic cost-of-time), we chose a

linear function to facilitate participants’ understanding of the trade-off.
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(a) Prospective (b) Simultaneous

Figure 3. Experimental decision screens

Overall, stage four thus contains four sub-phases (prospective low, prospective high,
simultaneous low, and simultaneous high) with 40 tasks per sub-phase. Participants first
work on the prospective task before working on the simultaneous task within the same
cost-of-time condition.

Stage 5: Questionnaire and Additional Measures. We collect additional participant-
level data in stage five. First, we measure participants’ reaction time via a modified ver-
sion of our main task. Here, participants need to identify a single “X” among 15 “0”s
in the familiar 4x4 table (see screenshot A10). The maximum reward they can earn is
50 points, and the cost-of-time is 10 points per second. Like in the simultaneous envi-
ronment, participants must select and submit their selection with one mouse click each.
In total, participants solve 30 reaction-time-tasks. Secondly, we collect survey measures
of risk and time preferences according to the Global Preference Survey (GPS) module
(Falk et al., 2022), subjective fatigue levels during the week and right after the study
using visual analog scales (Radbruch et al., 2003), competition preferences (Fallucchi et
al., 2020), and participants’ basic socio-demographic information. Furthermore, we elicit
subjectively perceived time pressure during the tasks in the prospective and simultaneous
environment.

3.2 Implementation

We pre-registered the experiment in June 2021 (AEA RCT Registry No. 7748) and sub-
sequently conducted sessions at the MABELLA laboratory a the University of Mainz in
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June and July 2021. Participants were invited using ORSEE (Greiner, 2015), and the
experiment was programmed in oTree (D. L. Chen et al., 2016). 91 participants, all with
(corrected to) normal vision, in 15 sessions participated in the study. Each session lasted
between 1:45 and two hours. Participants earned 23.70€ on average (min: 18.90€; max:
30.40€), which includes a 5€ show-up fee. To limit outside influences on participants’
time choices inside the experiment (e.g., wanting to leave the lab earlier), we instructed
participants that they would have to wait until everybody in their session had finished
the experiment and would only receive payment afterward. The experimental currency
was called points during the experiment, and the exchange rate was 100 points = 0.20€.
In each experimental stage, 30% of the tasks were randomly selected for payoff. After
arriving at the lab, we assigned each participant a random seat in the laboratory, where
they received printed instructions about the experiment. We instructed participants only
to read the relevant instructions for each stage. Each stage at the computer ended with a
prompt for participants to read the next part of the instructions. The elicitation of beliefs
was unannounced and explained on screen, not in the printed instructions. Participants
could contact the experimenter via a chatbox or raise their hands if they had questions.
The translated instructions are available in Appendix A.6.1.

4 Experimental Measures and Descriptives

This section describes the measures and descriptive data on the three components we
predicted to impact participants’ time choices: participants’ performance, their beliefs,
and their uncertainty attitudes.13

4.1 Performance

We measure time-dependent performance for each participant based on the number of
correct solutions for each of the five fixed times (2,3,4,5,6 seconds) in stage one of the
experiment. A first – aggregate – measure is the mean performance of each participant,
i.e., the fraction of correct solutions across all time conditions (µi). On average, partic-
ipants answer 63.6% of the 250 tasks correctly across all fixed times. A less aggregate
approach is to calculate five measures of mean performance, one for each fixed time
(µi

t). As expected, participants’ performance is worst in 2 seconds (25.3% correct solu-
tions) and increases with more time (3 sec: 50.6%; 4 sec: 72.2%; 5 sec: 81.1% and 6
sec: 89.1%).1⁴

13 Figure A3 in Appendix A.2 provides the empirical cumulative distributions based on the raw data.
14 Parametric and non-parametric tests (i.e., t-tests, Mann-Whitney-U tests, and Kolmogorov-Smirnov

tests) confirm that an increase in the available time leads to significant (all pairwise comparisons
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However, while parsimonious, these measures rely on two critical assumptions. The
first assumption is that the point estimate of the mean performance is reasonably pre-
cisely measured. To account for measurement error, we define upper and lower 95%
confidence bounds of performance by an approach similar to S. Chen and Schildberg-
Hörisch (2019) and calculate 95%Wilson score intervals for the share of correct solutions
for each fixed time and each participant.1⁵ These upper and lower confidence estimates
provide a more robust performance measure. The second assumption is that participants
do not get better at the task throughout the first stage (and thus might be even better
in the following stages due to learning effects). We analyze learning behavior in stage
one in Appendix A.1.1 and find no evidence that participants improve over the course of
stage one.

To get a structural estimate of participants’ time-dependent performance, we intro-
duce a third measure and estimate parameters of a performance function. This approach
has two key advantages over simple mean-based measures. Firstly, it aggregates the data
while retaining important details about a participant. Secondly, choosing a suitable func-
tional form gives the parameters a clear interpretation. We follow the “workhorse” model
from the literature on speed-accuracy trade-offs in neuroscience and psychology (see
Dean et al., 2007; Dosher, 1976; McElree & Carrasco, 1999; Reed, 1973) and their
structural approach to estimating time-dependent performance. More specifically, we
use maximum likelihood1⁶ to fit a three-parameter performance function for each par-
ticipant based on the mean performance for each fixed time in stage one. The function
is:

p(t) = β(1 − e−(t−α)/λ)) (5)

Each estimated parameter of this function captures a unique characteristic of participants’
performance profiles: β describes the asymptotic level, α the x-axis onset, and λ the
steepness of the function (see Dean et al., 2007). We restrict β to the unit interval in the
maximum likelihood estimation. Thus, the estimated function bp(t) and its parameters
constitute a structural participant-level estimate of how available time maps to the share
of correct solutions. Panel A of Figure 4 displays the estimated individual performance

p< 0.001) differences (increases) in performance in terms of the mean, mean rank and across the
entire distribution

15 While S. Chen and Schildberg-Hörisch (2019) rely on Wald-type approximations, we use Wilson score
intervals, as L. D. Brown et al. (2001) provide evidence that standard Wald-type approximations are
often severely biased in the case of binary outcome data. This is especially the case when the outcome
is close to 0 or 1, which is true for the performance of many participants with two or six seconds. In
these cases, L. D. Brown et al. (2001) suggests using Wilson score intervals.

16 See Appendix A.5 for details on the maximum likelihood estimation of equation 5 and all following
structural estimations.
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functions and the function estimated based on the pooled participant data. Panel B shows
a scatterplot of the individually estimated parameter values.
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Figure 4. Performance function

Most participants have an estimated asymptotic level close to 1 (59.3% of partici-
pants have a value of precisely 1, and 90% of participants have a value ≥ 0.90), imply-
ing almost all of them can achieve near-perfect performance with unlimited time. The
average x-axis onset is 1.47 seconds (Standard Deviation: 0.25) and captures the min-
imally necessary time, after which participants’ performance increases with additional
time.1⁷ Finally, the mean steepness parameter is 1.96 (SD: 0.58). To account for poten-
tial measurement error in our structural performance measure, we refit the performance
function on the calculated upper and lower 95% confidence bounds. The resulting es-
timates define our structural upper (Òpu(t)) and lower (bpl(t)) bound of performance for
each participant.

4.2 Beliefs

We measure participants’ subjective beliefs about their performance based on the data
from the ball allocation task in stage two. We follow a similar approach to Engelberg et al.
(2009) and Delavande & Rohwedder (2008, 2011) to provide a parsimonious description
of subjective beliefs. First, we fit a distribution on the data from each ball allocation

17 A caveat is that just by random clicking, participants would be able to achieve an expected performance
of 1/16. Thus, with a lower time, participants who click randomly could still reach an expected perfor-
mance of 6.25%, as long as they can click fast enough. To put this time into perspective, in our simple
reaction time measure, participants identify the correct answer in 0.95 seconds on average.
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task (2 sec., . . ., 6) and obtain the distribution’s moments and measures of centrality.
More specifically, we fit a two-parameter beta distribution by maximum likelihood if a
participant allocates probability mass (i.e., balls) into more than one bin and an isosceles
trapezoid distribution if a participant allocates all probability mass into only one bin.
We subsequently use the mean of the belief distribution as our measure of participants’
subjective beliefs for the analysis. The mean – in contrast to the mode or median – has the
advantage that it provides a measure based on the entire distribution of elicited beliefs.1⁸

To construct a parsimonious measure of over- and underconfidence, we apply a simi-
lar approach to S. Chen and Schildberg-Hörisch (2019) and compare participants’ mean
subjective beliefs to their estimated 95% performance interval. We define a participant
to have well-calibrated beliefs for time t ∈ (2, . . . , 6) if the mean subjective belief for time
t is within the confidence interval, and we assign a value of 0 to the measure of over-
confidence. When the subjective belief is above or below the confidence interval, we
subtract the value of the closest bound. The resulting measure is negative for underconfi-
dent and positive for overconfident agents and describes by howmany percentage points
participants over- or underestimate their performance. On average, participants slightly
overestimate their performance with 2 seconds (by 4.2pp.) and underestimate it for all
other fixed times (3 sec: -0.01pp.; 4 sec: -2.6pp.; 5 sec: -2.7pp. and 6 sec: -4.4pp.). We
define the mean of these five time-dependent measures as our measure of average over-
confidence and find that participants slightly underestimate their ability on average (by
1.2pp.; t-test of mean = 0: p= 0.082).

Finally, we take a more structural approach and estimate a belief weighting function
for each participant. While the previous literature does not provide specific guidance
on the functional form of over-/under weighting (i.e., estimation) of beliefs Tversky and
Fox (1995) and Fox and Tversky (1998) estimate a two-parameter weighting function for
subjective beliefs and empirically show an inverse s-shape. G. Wu and Gonzalez (1999)
support this finding and demonstrate that a two-parameter weighting function fits sub-
jective beliefs well across multiple domains. We follow this small literature and use the

18 Engelberg et al. (2009) and Kröger and Pierrot (2019) investigate which measure of centrality (i.e.,
the mean, mode, or median) of elicited belief distributions of professional forecasters most strongly
correlates with their point predictions. Engelberg et al. (2009) finds no significant differences, while
Kröger and Pierrot (2019) suggest that the mode or the mean might fit the data better than a spe-
cific quantile (i.e., the median). While reassuring, the implications for our setting are limited as we
inspect retrospective beliefs about own performance rather than beliefs about uncertain future events.
Regardless, we replicate our principle analysis with the median and the mode of the belief distribu-
tions and report the results in the Appendix. We find that estimation results of the most parsimonious
model with the median (see Table A7 to A10) and the mode (Table A11 to A14) closely match our
main results. While all estimates are numerically similar, minor differences exist in standard errors
and p-values. Overall, we conclude that the main results are largely robust to alternative measures for
subjective beliefs.
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two-parameter weighting function proposed by Goldstein and Einhorn (1987) and Gon-
zalez and Wu (1999):

b(t) =
δB
bp(t)γ

B

δB
bp(t)γB + (1 − bp(t))γB (6)

In this equation, δB describes the elevation and γB the curvature of the belief weight-
ing function, and bp(t) the estimated performance in time t according to equation 5. δB

and γB jointly provide information on how strongly the mean subjective belief deviates
from the estimated fraction of correctly solved tasks. When the elevation and the curva-
ture are equal to one, this implies a linear relationship between subjective beliefs and
performance and, thus, unbiased or well-calibrated beliefs. We estimate the parameters
of equation 6 to maximize the likelihood of observedmean beliefs given estimated perfor-
mance via maximum likelihood (see Appendix A.5). We estimate the parameters of the
belief weighting function once based on the pooled data and once for each participant
individually.
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Notes: Panel A plots the estimated pooled belief weighting function, where δB = 1.0, and γB = 0.68. Panel B plots the
individual parameters of the weighting function for each participant. The diamond represents the parameter values
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Figure 5. Belief weighting function

The parameter estimates from the pooled data imply an “inverse-s” shape of the
belief weighting function (see panel A in Figure 5). The estimated elevation parameter
(δB) is 1.0, and the curvature parameter (γB) is 0.68. However, the parameters estimated
individually for all participants reveal substantial heterogeneity (see panel B in Figure
5). The average estimated individual parameter is 1.21 (sd: 0.84) for the elevation and
0.84 (sd: 0.46) for the curvature. We thus find a large degree of individual heterogeneity
and, thus, substantial differences in the belief weighting functions of participants.
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4.3 Uncertainty Attitudes

We construct the measure of participants’ uncertainty attitudes from the data gathered
in the multiple price lists in stage three of the experiment. We define the normalized
certainty equivalent NCEi

t for each participant i and time t as the midpoint of the inter-
val between the rows of the multiple price lists where participants switched from payoff
scheme A (100 points for a correct solution, 0 otherwise) to payoff scheme B (sure pay-
off). If a subject always chooses payoff scheme A (B), we code their NCE with 1 (0).1⁹
Assuming linear utility, the NCEi

t correspond to the implied probability weight (L’Haridon
& Vieider, 2019).

However, the normalized certainty equivalents do not have a straightforward inter-
pretation by themselves. In the literature on risk and uncertainty, normalized certainty
equivalents are usually obtained for – and compared to – objective probabilities. How-
ever, we elicited them for a specific reward scheme and a given amount of time t to work
on our task. In line with the two-step model outlined in Section 2, we, therefore, relate
the NCEi

t data to participants’ subjective beliefs. Specifically, we calculate the difference
between the NCE and the mean of participants’ belief distribution for each time t. This
provides a measure of over-/ underweighting, which is positive for uncertainty-averse
and negative for uncertainty-seeking agents. On average, participants slightly overweight
subjective beliefs with 2 (by 5.0pp.) and 3 seconds (by 1.9pp.) and underweight it for
all other fixed times (4 sec: -2.1pp.; 5 sec: -6.2pp.; 6 sec: -10.3pp.). We define the mean
of these five time-dependent measures as our measure of average uncertainty aversion
and find that our experimental sample is, on average, slightly uncertainty-seeking (by
2.3pp.; t-test of mean = 0: p= 0.055).

More structurally, we map the elicited NCEt data to the estimated beliefs bb(t) based
on equation 6 for each time t in a two-parameter weighting function:

w(b(t)) =
δW
bb(t)γ

W

δWbb(t)γW + (1 − bb(t))γW
(7)

In this function, δW describes the elevation and γW the curvature. We again estimate
these parameters to maximize the likelihood of observed NCE data given estimated be-
liefs (see Appendix A.5). Thus, δW and γW jointly indicate how strongly a subject deviates
from the case of linear probability (in our case belief) weighting (i.e., δW = γW = 1).

The estimated parameters based on the pooled data show substantial belief weight-
ing (see panel A in Figure 5). The “elevation” parameter (δW) is equal to 1.4, and the cur-
vature parameter (γW) is 0.59, which translates to an overweighting of small-to-medium
subjective probabilities and a slightly underweighting of large subjective probabilities.
However, the individually-estimated parameters for all participants reveal substantial

19 This occurred in 6.6% (=30) of choices across all 455 multiple price lists.
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Figure 6. NCE weighting function

heterogeneity (see panel B in Figure 5). The average parameter is 1.19 (sd: 0.96) for
the elevation and 1.60 (sd: 1.15) for the curvature. Again the individual heterogeneity
leads to different parameter estimates on average compared to the pooled estimates.

5 Reduced Form Results

We first summarize participants’ time choices in the second stage of the experiment.
Subsequently, we conduct regression analyses to test our experimental hypotheses about
the relationship between our experimental measures and their predicted effects on time
choices. Finally, we provide evidence on the effects of subjective beliefs and uncertainty
aversion on payoffs.

5.1 Time Choices

Figure 7 plots participants’ time choices in both decision environments and for both cost-
of-time parameters. For the prospective task, we use participants’ time choice directly and
rely on the mean time choice for the simultaneous task. We formulate three observations
based on the raw time choice data.

Firstly, irrespective of the decision environment (i.e., prospective or simultaneous),
participants react to the two cost-of-time parameters in the direction predicted by our the-
oretical framework. 95.6% of participants choose more time (1.20 seconds longer) in the
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Figure 7. Time choices

low cost-of-time situation compared to the high cost-of-time situation in the prospective
environment.2⁰ In the simultaneous choice environment, all participants have a higher
average response time (by 0.99 seconds) for the low cost-of-time setting. These differ-
ences confirm that participants choose significantly (both t-tests: p< 0.001) more time
in the low cost-of-time condition compared to the high cost-of-time condition.

Result 1: Consistent with prediction 1, participants take more (less) time when the
cost-of-time is low (high).

Secondly, both time choices in the simultaneous environment are strongly correlated
(Spearman’s ρ = 0.79, p< 0.001) as well as the average response times in the prospective
environment (Spearman’s ρ = 0.53, p< 0.001). Conversely, the correlation between the
same cost-of-time condition and across decision environments is smaller (high cost-of-
time: Spearman’s ρ = 0.26, p= 0.012; low cost-of-time: Spearman’s ρ = 0.40, p< 0.001).
This indicates that participants’ time choices correlate more strongly within the same
decision environment than within the same cost-of-time condition.

Thirdly, the raw data shows that participant-level heterogeneity exists even within a
single condition. For example, the inter-quartile range in the two high cost-of-time condi-
tions is 1 (prospective) and 1.16 (simultaneous) seconds and 0.8 and 0.74 in the two low
cost-of-time conditions. This heterogeneity in time choices could result from individual
differences in performance, beliefs, or uncertainty attitudes – the hypothesized channels
introduced in Section 2.

20 2.2% choose the same time, and only 2.2% a (slightly) lower time. Both individuals who chose a lower
time deviated from their previous choice only by 0.1 second.
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Table 1. Time choices

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.262*** -0.476** -0.369*** -0.061 0.076 0.007
(0.088) (0.236) (0.135) (0.079) (0.140) (0.094)

Average Uncertainty Aversion (10pp.) 0.114** 0.274* 0.194** 0.004 -0.115 -0.055
(0.052) (0.142) (0.082) (0.045) (0.086) (0.059)

Average Performance (10pp.) -0.142** -0.448*** -0.295*** -0.374*** -0.607*** -0.490***
(0.060) (0.107) (0.067) (0.058) (0.094) (0.068)

High first -0.022 -0.255 -0.138 -0.034 -0.094 -0.064
(0.108) (0.180) (0.121) (0.086) (0.134) (0.099)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.062 0.207 0.574 0.401 0.426 0.702

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Average Performance is the average performance, Low time cost is a dummy for the low cost-
of-time condition, High first is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit
change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01

We investigate our theoretical predictions in a regression framework, where the de-
pendent variable is the time choice. Table 1 presents regression results for the two de-
cision environments and cost-of-time parameters. We estimate one OLS model for each
decision environment and each cost-of-time condition and one pooled model with in-
dividual random effects for each decision environment. We use the most parsimonious
measures of overconfidence and uncertainty attitudes in our main specification, i.e., the
average overestimation and average uncertainty aversion. In addition, we include partic-
ipants’ average performance to control for the effect of ability differences and a dummy
for the order of the cost-of-time conditions to control for order effects.

Prospective Decision Environment. We present the estimation results for the prospec-
tive decision environment in columns 1, 2, and 3. As predicted by our theoretical frame-
work, higher average overconfidence reduces the time participants choose. More specif-
ically, a 10pp. overestimation (i.e., an agent who believes to solve 10pp. more problems
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than they do) is associated with a 0.26 seconds (p= 0.004) lower time choice in the
high cost-of-time environment and a 0.48 seconds (p= 0.047) lower time choice in the
low cost-of-time environment and a 0.37 seconds (p= 0.007) lower time choice in the
combined panel model.

The uncertainty aversion results mirror the overestimation results. As predicted, a
higher average uncertainty aversion is associated with a higher time choice. More specif-
ically, a 10pp. higher uncertainty aversion is associated with a 0.11 seconds (p= 0.03)

higher time choice in the high cost-of-time environment and a 0.27 seconds (p= 0.057)

higher time choice in the low cost-of-time environment and a 0.19 seconds (p= 0.018)

higher time choice in the combined panel model.
Finally, higher performance is associated with a lower time choice. More specifically,

the coefficient on average performance indicates that a 10pp. increase in average perfor-
mance is associated with choosing 0.14 seconds less in the low cost of time (p= 0.021),
0.45 seconds less in the high cost of time (p< 0.001) and 0.30 seconds (p< 0.001) in
the panel model. Furthermore, the estimated coefficient on the difference in time choice
between the high and the low cost-of-time settings in the panel model indicates that
participants take roughly 1.2 seconds longer when the cost-of-time is low, providing ad-
ditional support for Result 1. We summarize our results in the prospective environment
as follows:

Result 2a: A higher average performance is associated with a lower time choice in the
prospective decision environment.

Result 3a: A higher average overestimation is associated with a lower time choice in
the prospective decision environment.

Result 4a: A higher average uncertainty aversion is associated with a higher time choice
in the prospective decision environment.

Simultaneous Decision Environment. Conversely, in the simultaneous decision en-
vironment (columns 4, 5, and 6), all estimates for overconfidence and average uncer-
tainty aversion are smaller and insignificant. The coefficients for average performance
are larger than in the prospective decision environment and remain significant. They
indicate that a 10pp. increase in average performance is associated with choosing 0.37

seconds less in the low cost of time (p< 0.001), 0.6 seconds less in the high cost of time
(p< 0.001) and 0.49 seconds (p< 0.001) in the panel model. The estimated coefficient
for the low time cost dummy in the panel model indicates that participants take roughly
0.99 seconds longer (p< 0.001) than in the high cost of time environment. We, therefore,
stipulate the following results for the simultaneous decision environment:

Result 2b: A higher average performance is associated with a lower time choice in the
simultaneous decision environment.
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Result 3b:We do not find support for prediction 3 (i.e., that overestimation is associated
with a lower time choice) in the simultaneous decision environment.

Result 4b: We do not find support for prediction 4 (i.e., that uncertainty aversion is
associated with a higher time choice) in the simultaneous decision environment.

Result 5: We find that overestimation and uncertainty aversion are associated with
time choices in the prospective but not in the simultaneous decision environment.

Other than the hypothesized inherent difference between decision environments, an-
other potential reason for the missing effect of the behavioral factors could be that par-
ticipants learn throughout the forty tasks in the simultaneous environment and adapt
their time choices. To test this, we re-estimate our regression in the simultaneous envi-
ronment and use three alternative measures for time choices: (i) the average submission
time of the first ten tasks, (ii) the submission time of only the first task, and (iii) the
submission time in task ten. We show the results in Table A6 in Appendix A.2. We do not
find evidence of any effect of the behavioral factors for any of the alternative measures,
and our results are qualitatively similar to the main results in Table 1.

Controlling the main regression for individual-level characteristics (survey measures
of time, risk and competition preferences, gender, age, perceived time pressure, fatigue,
and the anticipation of more intensive work in the second part of the experiment) does
not affect the main regression coefficients in a meaningful way (see Table A2 in Ap-
pendix A.2). Only age has a small negative and significant coefficient in the panel model
for the prospective condition, while all other individual-level characteristics are small
and insignificant. We, therefore, conclude that the estimates for our main measures of
interest (overconfidence and uncertainty aversion) are robust to controlling for fatigue
or depletion effects, perceived time pressure in the second part of the experiment, the
anticipation of more intensive work, or other individual characteristics.21

Finally, using alternative specifications for performance, such as the average perfor-
mance for each fixed time (Table A3) or the estimated structural performance parameters
(Table A4) does not substantially change our coefficients of interest.

Overall, the reduced form results support behavioral predictions 3 and 4 in the
prospective decision environment but not in the simultaneous environment, supporting
prediction 5. This suggests that our participants rely on their beliefs and uncertainty at-
titudes when solving speed-accuracy trade-offs in prospective time planning situations.
Conversely, these behavioral measures do not predict their time choices when working
on the task.

21 In Appendix A.1.2, we further investigate whether self-reported effort in part two of the experiment
is correlated with participants’ time choices and do not find any evidence to support this claim.
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5.2 Payo�s

The previous analysis on time choices has revealed that overconfidence and uncertainty
aversion predict time choices in the prospective decision environment but not in the si-
multaneous decision environment. In this section, we use a path analysis22 approach
to investigate how the behavioral factors affect participants’ payoff through their time
choices. Path analysis allows us to (i) investigate how time choices and participants’ av-
erage performance predict payoffs and (ii) analyze the indirect effects of the behavioral
factors on payoff through time choices.

We specify an over-identified recursive path model with two endogenous variables
(see Figure A4). The first endogenous variable is participants’ time choice which – ac-
cording to our theoretical model and equal to the specification in Table 1 – is associated
with overconfidence, uncertainty attitudes, performance, and the dummy for the order
of the decision environment. The second endogenous variable is participants’ payoff. We
model the payoff to be affected by time choices, the general performance measure, and
the order dummy. The results are displayed in Table 2.23 The results for the effect of
overconfidence and uncertainty aversion on time choice are qualitatively similar to the
results obtained in Table 1 and confirm that those predict time choices.

Furthermore, the estimates show that time choices affect payoffs significantly in the
high cost-of-time but not in the low cost-of-time condition. In the high cost-of-time con-
dition, a 1-second higher time choice is associated with a reduction in payoff by 7.5
points (p< 0.001) in the prospective and by 11.2 points (p< 0.001) in the simultaneous
environment. Similarly, participants who have a higher average performance in the task
earn a higher payoff irrespective of their time choice across all decision environments
(all p< 0.001). Finally, we observe a negative coefficient for the high-first environment
in the prospective low cost-of-time environment. This implies that participants who first
encountered the high environment earn less in the prospective low environment; how-
ever, this effect does not seem to be driven by time choices.

We now turn to the indirect effects of behavioral factors on payoffs through time
choices. The results show that overconfidence and uncertainty aversion significantly
22 Path analysis allows for the estimation of simultaneous equations and multiple endogenous variables.

Akin to mediation analysis, it allows for a straightforward estimation of indirect effects. The models are
estimated using maximum likelihood, and their assumptions are similar to classical linear regression
(see Kline (2011) for an extensive discussion of the different assumptions).

23 We additionally estimate a full model where we allow overconfidence and uncertainty aversion to
affect both time choices and payoffs. Theoretically, an argument for including these paths might be
due to “motivational aspects” of (over)confidence as demonstrated by S. Chen and Schildberg-Hörisch
(2019). However, our theoretical framework does not allow for this effect. The results (presented in
Table A5 in Appendix A.2) are qualitatively similar to the parsimoniousmodel, and the additional paths
seem to play no role empirically. The modification indices for the two paths between overconfidence
and uncertainty aversion and payoffs in the reduced model are below 2, indicating that their effect is
insignificant and their inclusion would not improve the fit of the model.
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Table 2. E�ects of overconfidence and uncertainty aversion on time decisions and payo�s

Prospective Simultaneous

High Low High Low

(1) (2) (3) (4)

Regression Slopes
Time Choice

Average Overconfidence (10pp.) -0.26∗∗∗ -0.48∗∗ -0.06 0.08
(0.10) (0.23) (0.08) (0.14)

Average Uncertainty Aversion (10pp.) 0.11∗∗ 0.27∗∗ 0.00 -0.11
(0.05) (0.14) (0.04) (0.08)

Average Performance (10pp.) -0.14∗∗ -0.45∗∗∗ -0.37∗∗∗ -0.61∗∗∗

(0.06) (0.10) (0.05) (0.09)
High first -0.02 -0.25 -0.03 -0.09

(0.11) (0.17) (0.08) (0.13)

Payo�

Time Choice -7.47∗∗∗ -0.25 -11.20∗∗∗ -0.59
(1.10) (1.41) (1.11) (1.44)

Average Performance (10pp.) 6.20∗∗∗ 9.18∗∗∗ 5.27∗∗∗ 8.39∗∗∗

(0.69) (1.33) (0.60) (1.55)
High first -0.75 -3.86∗∗ 0.10 0.08

(0.96) (1.78) (0.83) (1.65)

Intercepts

Time Choice 4.32∗∗∗ 7.60∗∗∗ 5.77∗∗∗ 8.27∗∗∗

(0.35) (0.67) (0.37) (0.60)
Payo� 12.43∗ 26.95∗∗ 35.04∗∗∗ 35.23∗∗

(6.43) (13.08) (6.54) (15.61)

Indirect E�ects on Payo�

Average Overconfidence (10pp.) 1.96∗∗ 0.12 0.69 -0.04
(0.80) (0.71) (0.87) (0.24)

Average Uncertainty Aversion (10pp.) -0.85∗∗ -0.07 -0.04 0.07
(0.41) (0.39) (0.50) (0.21)

Average Performance (10pp.) 1.06∗∗ 0.11 4.19∗∗∗ 0.36
(0.44) (0.62) (0.72) (0.91)

Total E�ects on Payo�s

Average Performance (10pp.) 7.26∗∗∗ 9.29∗∗∗ 9.46∗∗∗ 8.75∗∗∗

(0.88) (1.18) (0.81) (1.05)

CFI 1.00 1.00 1.00 1.00
TLI 1.00 1.04 1.02 1.03
RMSEA 0.02 0.00 0.00 0.00

Notes: Path analysis estimated by maximum likelihood. The recursive, reduced and
thus over-identified model has two endogenous variables: time choice and payo�.
Time choice has a dual role and has an e�ect on payo�. The exogenous variables are
Average Uncertainty Aversion and Average Overconfidence as described in Section
4, Average Performance as the average performance, High first is a dummy for the
order of the two cost-of-time conditions. (10pp.) indicates that a unit change in the
variable corresponds to a 10 percentage points change. Bootstrapped (n = 1000)
standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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affect payoffs through time choices only in the prospective high cost-of-time environ-
ment. More specifically, a 10pp. increase in overconfidence is associated with a 2 points
(p< 0.01) higher payoff – an increase by 7.5% of the average payoff in this decision and
cost-of-time environment. The finding is explained by the fact that overconfidence de-
creases time choices, which in turn increases payoffs. Conversely, this implies that under-
confident agents (who select more time) have a lower payoff. For uncertainty aversion,
the estimates imply that an increase of 10pp. is associated with a 0.9 points (p= 0.034)

lower payoff – a reduction in payoff by 3.3%. In all other decision environments, the
behavioral factors do not significantly affect payoffs through time choices.

Overall the results of the path analysis confirm that overconfidence and uncertainty
aversion significantly predict time choices in the prospective environment. However, they
only have an indirect effect on payoffs in the high cost-of-time environment where un-
derconfidence and uncertainty aversion are associated with longer time choices and, in
turn, lower payoffs.

6 Structural Results

We now provide additional evidence based on the structural estimates introduced in
Section 4. We first derive predicted time choices and afterward compare the structural
predictions to participants’ actual time choices and payoffs. This generates two additional
insights: First, the structural estimates entail a tentative normative notion. If a participant
chooses a higher (lower) time compared to the structurally predicted time choice, we
can conclude that this participant took “too much” (“too little”) time given their ability.
This should translate into a lower payoff for that participant. Second, the individual
structural estimates can – in addition to the reduced form results – provide suggestive
evidence whether participants tried to choose time to maximize their payoff according
to the theoretical framework (i.e., taking into account their performance, beliefs, and
uncertainty attitudes.)

6.1 Rational and Behavioral Time Choices

Based on the structural estimates, we calculate payoff-maximizing time choices for each
participant in a given cost-of-time setting in stage four. We derive two payoff-maximizing
time choices based on two objective functions: The first is the rational time choice based
solely on the performance function and participants’ estimated parameters. The second
time choice is the behavioral time choice, which incorporates the functional specifications
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for subjective beliefs, uncertain attitudes, and their structural estimates. These two pre-
dicted time choices mirror the solutions to the two optimization problems outlined in
Section 2.
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Notes: This plot shows the expected behavioral and rational reward functions based on the average individual param-
eter estimates for the low cost-of-time (left) and the high cost-of-time (right). The parameters are β̄ = 0.97, λ̄ = 1.94,
ᾱ = 1.46 as well as δ̄B = 1.19, γ̄B = 0.87, δ̄W = 1.18 and γ̄W = 1.6. In the low cost-of-time, the rational time choice
is t
∗
L
= 4.99, and the behavioral is t

b

L
= 4.41 seconds. The average actual time choice is 4.57 (prospective) and 4.35

(simultaneous) seconds, respectively. In the high cost-of-time, t
∗
H
= 2.89 and t

b

H
= 2.93 seconds. The average actual

time choice is 3.4 (prospective) and 3.37 (simultaneous) seconds. The analysis is based on the n = 86 individuals
for whom the structural estimation of performance, beliefs, and uncertainty attitudes parameter successfully con-
verged.

Figure 8. Rational and behavioral reward functions

Figure 8 provides a graphical representation of the approach based on the average
participant data. To calculate the rational time choice, we first plug the parameter esti-
mates for β (asymptotic level), λ (steepness) and α (x-axis intercept) in the performance
function p(t) (see equation 5) and multiply this function with the reward function y(t)

in stage four (see equation 4). This defines the expected payoff function in stage four.
The maximum of this function constitutes our rational time choice (t∗), i.e., the payoff-
maximizing solution to the speed-accuracy trade-off in our setting based on a given per-
formance function. Based on this approach, the average rational time choice is t∗L = 4.99

in the low and t∗H = 2.89 seconds in the high cost-of-time condition. We repeat the anal-
ysis to obtain the behavioral time choice but replace the performance function with the
behavioral two-step model (see equation 3). We multiply bw(bb(t)) with y(t), and plug in
the estimated parameters for δB (beliefs elevation), γB (beliefs curvature), δW (NCE el-
evation), and γW (NCE curvature) and obtain the maximum (tb) of the resulting payoff
function. Therefore tb defines the time choice that maximizes expected rewards given
the estimated parameter values for performance, as well as subjective beliefs and uncer-

30



tainty attitudes. Based on this approach, the average behavioral time choices are tb
L = 4.41

seconds in the low and tb
H = 2.93 seconds in the high cost of time condition.

Assumptions and a sample restriction. Before we continue, we acknowledge a poten-
tial concern for the validity of the structural analysis. The structural approach is based
on the strong assumption that the functional forms proposed in equations 5, 6, and 7
are good descriptions of performance, beliefs, and uncertainty attitudes during the en-
tire experiment and for every individual. However, this assumption might be too strong,
as, e.g., learning, motivation, or fatigue effects could affect participants’ performance
in the later stage of the experiment or between different choice environments. In addi-
tion, while the proposed functional form for performance follows the workhorse model
in speed-accuracy trade-offs, it might not be a good representation for every individual
in our setting. Both of these factors could bias our calculated benchmarks and thus limit
the interpretation of the structural estimates.

To alleviate these concerns, we restrict our sample in the following analysis to individ-
uals for whom the actual performance in stage four is contained in the 95% confidence
bound of their predicted performance. Thus, we exclude individuals whose performance
in stage four (given their time choice) we either over- or underestimate: Suppose a par-
ticipant takes 3.5 seconds in the high cost of time condition in the simultaneous environ-
ment. If their actual performance, e.g., 75%, is enclosed within our predicted interval
(based on the upper and lower bound of the performance function), we keep this par-
ticipant in the restricted sample. This restriction leads to a reduced sample of 71 (high
cost-of-time) and 70 (low) participants in the prospective decision environment and 69
(high) and 47 (low) in the simultaneous decision environment.2⁴

6.2 Structural Predictions, Time Choices and Payo�s

We now turn to the individual structural estimates in the restricted sample and com-
pare them to participants’ actual time choices. We investigate participants’ payoffs and
test the association between participants’ actual and structurally predicted rational and
behavioral time choices on an individual level.

24 Table A15 and Figures A6 and A7 repeat the structural analysis with the full sample. We find mostly
qualitatively consistent results. However, the analysis of the payoff data is more inconsistent. Appendix
A.1.2 reports on a deeper investigation of the differences between predicted and actual performance
in stage 4 and concludes that for around 70 % of the sample, our structural estimates offer a reason-
able benchmark. Furthermore, the time choices between the excluded participants and the restricted
sample do not differ significantly in all environments and cost conditions (pairwise t-tests all p> 0.15).
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Table 3. Comparison of time choices

Cost of Time Environment n
Time Choice Behavioral ∆t

Time

Behavioral Rational ∆t
Time

Rational

mean sd mean sd mean sd mean sd mean sd

High
Prospective 71 3.37 0.50 2.89 0.55 0.47 0.63 2.88 0.18 0.49 0.51
Simultaneous 69 3.39 0.47 2.92 0.55 0.47 0.64 2.87 0.19 0.52 0.38

Low
Prospective 70 4.51 0.85 4.67 0.94 -0.16 1.04 4.87 0.47 -0.36 0.85
Simultaneous 47 4.43 0.77 4.91 0.96 -0.47 1.23 4.94 0.41 -0.51 0.61

Notes: This table shows the average time choices, the predicted behavioral and rational actions, and the distance between
participants’ average time choice and the rational and behavioral action. Data restricted to n participants (see column
3) with convergence in the MLE estimation and where participants’ performance is contained in the 95%-CI of estimated
performance.

Mean differences. Table 3 compares the structurally estimated time choices with partic-
ipants’ actual time choices.2⁵ The predicted average behavioral time choices are 2.89 and
2.92 (high) and 4.87 and 4.91 seconds (low), and the predicted average rational time
choices are 2.88 and 2.87 (high) and 4.87 and 4.94 seconds (low). Participants choose,
on average, 3.37 and 3.39 (high) and 4.51 and 4.43 seconds (low) across decision en-
vironments. The difference between participants’ actual and the predicted behavioral
time choices, (∆Time

Behavioral) is significantly different from 0 in all conditions and environ-
ments (t-tests: pH

P < 0.001, pH
S < 0.001, pL

P < 0.001, pL
S < 0.001). Likewise, the differences

between participants’ time choices and the predicted rational time choices, (∆Time
Rational) are

all significantly different from 0 (t-tests: pH
P < 0.001, pH

S < 0.001, pL
P < 0.001, pL

S < 0.001).
This indicates that participants took too much time in the high cost-of-time and too lit-
tle time in the low cost-of-time condition compared to both benchmarks. In addition,
the average difference between participants’ actual and behavioral time choices is con-
sistently smaller than the difference between actual and rational time choices. However,
these differences are not significantly different from each other (paired t-tests: pH

P = 0.82,
pH

S = 0.45, pL
P = 0.07, pL

S = 0.82). Table 3 therefore provides – at best – only weakly sug-
gestive evidence that the predicted behavioral time choices are, on average, closer to
participants’ actual time choices than the predicted rational time choices.

Payoffs. The observed mean difference between participants’ actual and predicted time
choices should produce corresponding effects on participants’ payoffs: Figure 9 plots the
average expected payoff (in points) split by cost-of-time condition and decision envi-
ronment. Each plot displays the mean payoff based on participants’ actual performance
(green), the mean hypothetical payoff based on the estimated performance function for

25 These values differ compared to those in Figure 8 as the Figure used data from the full sample and
relied on time choices based on average parameter values, whereas Table 3 depicts average time choices
based on individual parameter values in the restricted sample.
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participants’ actual time choice (orange), as well as the mean predicted payoff calculated
for the rational (blue) and behavioral (violet) time choice.
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Figure 9. Payo� – restricted

The payoff implied by the rational time choice (purple) is significantly higher than
the payoff based on participants’ actual performance (green) in all but the simultaneous
low cost-of-time condition. This suggests that participants choose time suboptimally and
fail to optimize their payoffs. Conversely, the difference between the payoff based on
actual performance and the payoff according to the behavioral time choice is numerically
smaller and statistically insignificant. This implies that participants’ actual payoffs are (on
average) similar to the payoffs predicted by the behavioral time choices.

Individual-level correlations. We now investigate the association between actual and
predicted time choices on an individual level more closely. In the prospective decision
environment, Pearson’s correlation coefficients suggest a stronger correlation between
participants’ actual time choices and the behavioral time choice (rL = 0.32, rH = 0.28)
compared to the correlation between participants’ actual time choices and the rational
time choices (rL = 0.29, rH = 0.15).2⁶ However, the difference between the correlations
is not statistically significant according to William’s tests for testing dependent correla-
tions (pL = 0.38, pH = 0.78). In contrast, the correlation between rational and actual time
choices is markedly larger (rL = 0.61, rH = 0.62) than between behavioral and actual time

26 Figure A5 plots the predicted structural estimates of the behavioral and rational time choices against
actual time choices in both decision environments and cost-of-time conditions.
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choices (rL = −0.003, rH = 0.21) in the simultaneous decision environment. These corre-
lations are statistically significantly different for both cost-of-time conditions (William’s
test: pL < 0.001, pH < 0.001). This suggests that in the prospective decision environment,
the predicted behavioral time choices correlate more strongly (yet insignificantly) with
actual time choices compared to the rational ones. In the simultaneous decision environ-
ment, the rational time choice correlates more closely with participants’ behavior.2⁷ This
analysis suggests that participants seem to generally optimize their payoffs in line with
our theoretical framework, indicated by (mostly) medium to high correlations between
structural predictions and participants’ time choices. Further, the finding presented in
Section 5, i.e., that the role of subjective beliefs and uncertainty attitudes and perfor-
mance for determining time choices is markedly different between decision environ-
ments, is confirmed by the structural estimations.

Overall, the structural results offer several insights: First, they provide evidence that
participants’ average time choice correlates strongly with a structural estimate of time
choice based solely on performance in the simultaneous decision environment. In con-
trast, participants’ average time choice in the prospective decision environment corre-
lates more strongly with the structurally estimated time choice based on the behavioral
approach. This directly complements the reduced form results. Second, the structural
estimates (in the restricted sample) suggest that – on average – participants maximized
payoffs according to a behavioral approach to solving the speed-accuracy trade-off.

7 Discussion and Conclusion

In this paper, we investigated the influence of subjective beliefs and uncertainty attitudes
on time choices in a speed-accuracy trade-off in a cognitively demanding task. Based on
a simple theoretical framework, we designed an experiment that allows for the incentive-
compatible measurement of performance, beliefs about performance, and uncertainty at-
titudes toward working on a task. We implemented a simple speed-accuracy trade-off by
reducing the reward participants obtain for a correct solution the more time they choose.
We design a rich choice environment and elicit time choices in both a low and high cost-of-
time condition as well as two distinct decision environments, choosing time prospectively
and simultaneously. We show that overconfidence and uncertainty attitudes affect time
choices in prospective decision-making in the predicted direction: Overconfident agents
take less time, while uncertainty-averse agents take more time. This leads to lower pay-
offs for uncertainty-averse and underconfident agents. In contrast, we find no evidence

27 This is different compared to the data presented in Figure 8 and Table A15, which is probably due to
the averaging of the data presented there.
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for the influence of overconfidence and uncertainty aversion in the simultaneous deci-
sion environment. This finding is in line with results from the previous literature, which
highlights different determinants for planned and actual choices.

We discussed how these findings relate to the existing scientific literature in the in-
troduction. Yet, we suggest tentative practical implications of our results, e.g., for time
management in organizations: Almost all work projects involve a speed-accuracy trade-
off, where the optimal completion time is a function of the desired speed and accuracy
of the solution. A key challenge for managing those tasks is often to provide an accu-
rate estimate of a project’s completion time. Our results suggest, that conditional on the
decision environment and the cost of time, biased beliefs and uncertainty attitudes can
lead to suboptimal time choices and, subsequently, lower rewards and foregone payoffs.
This leaves room for potential improvements: Managers who are aware of their own (or
their employees’) behavioral traits might be able to improve the outcome of a project by
choosing longer or shorter delivery times based on a person’s characteristics. By provid-
ing feedback or benchmarks from time usage on similar projects (by colleagues), such
estimations may become better calibrated. Future research should therefore investigate
how time planning and usage in organizations can be improved in light of the influence
of behavioral factors.

Finally, our results are relevant for a growing public discussion: reducing regular
work hours or introducing 4-day work weeks. This discussion centers around reducing
time spent at work without reducing the output produced. A crucial step to realizing this
goal will be to understand (the efficiency of) time usage at the workplace better. Our
results suggest that time usage and how people solve speed-accuracy trade-offs is a com-
plex phenomenon that depends not only on the working environment, the cost of time,
and ability but also on behavioral traits. Further investigating those determinants might
lead to a better understanding of time usage, improve time allocation for employees and
further be vital to ameliorate concerns of ever-increasing time pressure at the workplace
(Moore & Tenney, 2012; Perlow, 1999; Whillans & West, 2022).

In summary, this paper provides novel and relevant results about human behavior in
cognitively-demanding tasks governed by speed-accuracy trade-offs. At the same time,
our results suggest many open questions and avenues for future research. While the
results of our pre-registered experiment provide suggestive evidence for an association
between behavioral measures and prospective time choices, we do not claim that these
results are causal. It would be interesting to investigate treatments that try to manipulate
(or de-bias) beliefs by providing feedback to participants about their actual performance
or their supposed uncertainty attitudes. These treatments should affect time choices in
prospective environments but not in simultaneous ones. While our experiment featured a
rich choice environment, it seems worthwhile to investigate time choices under more re-
alistic circumstances, i.e., more complex reward schemes and tasks with more extended
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time frames. This will contribute to a better understanding of how time choices are made
in different settings and how they may be improved.
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A Appendix

A.1 Robustness Analyses

A.1.1 Learning E�ects. One potential problem for our measures of performance could
arise if participants improve throughout the first stage of the experiment. To investigate
potential learning effects, we estimate average marginal effects from a probit model
on the performance data in stage one. The dependent variable is whether a partici-
pant selects the correct solution and the independent variables are the round number, a
third-degree polynomial of available time, as well as participant fixed effects.2⁸ Table A1
presents the estimation results. The coefficient on the round variable is very close to 0
and insignificant (p= 0.34), indicating that no significant learning takes place. The av-
erage marginal effect suggests that the mean participant performance increases slightly
(by 1.5pp. over all 250 tasks) but insignificantly (p= 0.322). We thus conclude that par-
ticipants do not learn throughout stage one and that ability, and thus performance, is
stable.

A.1.2 Intensive Margin of E�ort. While performance might be stable in the fixed-time en-
vironment of stage one of the experiment, participants might (anticipate to) work more
or less intensely during stage four and thus choose a higher or lower time. We conduct
two analyses to investigate this. The first analysis is based on a self-reported survey item
elicited at the end of the experiment. We asked participants to compare the intensity,
with which they searched for the solution between stage one and stage four on a slider
from 0 (higher intensity in stage one) and 10 (higher intensity in stage four). The me-
dian answer is 5, and the mean 5.5, indicating that participants on average report to
work with similar intensity in the two stages. We additionally asked participants who
selected a value smaller than four or larger than seven whether they anticipated the
change in their effort intensity while making their time decisions. Twenty-three partic-
ipants reported working more intensively in stage four and that they anticipated this
while making their time selection. We check whether participants’ self-reported measure
of effort intensity correlates with the time they select in stage four and find no significant
correlation between the two variables for either high or low cost of time in either the
prospective or the simultaneous condition2⁹, as well as insignificant and small effects of
the survey variable when included in the main regression (c.f. Table A2). Furthermore,
we find no differences in terms of mean or mean rank for time choice, performance, and
payoff between participants that indicate to have worked more intensely in stage four
28 Using different polynomials for time and a higher degree polynomial for the round does not change

the estimates significantly.
29 Spearmans ρ: simultaneous high (ρ = −0.5, p= 0.63); low (ρ = −0.06, p= 0.55); prospective high

(ρ = −0.02, p= 0.88); low (ρ = −0.006, p= 0.96)
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Table A1. Learning in stage one

Dependent Variable:
Correct solution

(1)

Raw Regression Estimates

Round 0.000
(0.000)

Time 1.591***
(0.222)

Time2 -0.216***
(0.059)

Time3 0.012**
(0.005)

Average Marginal E�ects

Round 0.000
(0.000)

Time 1.577***
(0.0028)

Individual fixed e�ects X
Observations 22750

Notes: Generalized linear e�ects panel logit
model, where the dependent variable is
whether a participant answers the task cor-
rectly. The independent variables are the
round in stage 1, a third-degree polynomial
of the available time to answer the task, and
participant fixed e�ects. Heteroscedasticity ro-
bust standard errors clustered on the individ-
ual level. The upper part of the table contains
the raw regression estimates and the lower the
calculated average marginal e�ects of the vari-
ables. * p < 0.1, ** p < 0.05, *** p < 0.01
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and those that do not (all non-paired t-test and Mann-Whitney-U tests for all cost-of-
time and decision environments p> 0.25). This indicates that participants who report
having worked more intensely in stage four have not selected a significantly lower time,
performed better, or earned a higher payoff in stage four.

p < 0.001 p = 0.02 p < 0.001 p < 0.001
m : 0.01 m : -0.01 m : 0.03 m : 0.01
77% = 0 78% = 0 52% = 0 76% = 0

-0.2

-0.1

0

0.1

0.2

Plan 10 Plan 30 Stop 10 Stop 30

Pe
rf

or
m

an
ce

-P
re

di
ct

io
n

Notes: This graph shows how far away participants’ actual performance in stage five of the experiment is from the
closest 95% confidence bound. The value is 0 if the performance lies within the predicted confidence interval. p

reports the p-value of a test that the mean is equal to 0, m reports the mean, and the final row reports the number
of observations where the actual performance is contained in the estimated 95

Figure A1. Time decisions

The second analysis compares the actual performance of participants in stage one
and stage four. We test whether participants’ performance in stage four is contained in
the predicted 95%-confidence bound of the performance function estimated on the data
from stage one. This is true for 70.6% of participants’ (average) performance across all
environments in stage four. In all but the simultaneous condition with a high cost-of-
time, participants are slightly better than the prediction. Figure A2 displays the density
of the difference between the predicted performance and the actual performance in the
prospective and the simultaneous environment for both cost-of-time conditions. Figure
A1 the differences between participants’ performance and the closest confidence bound
when their actual performance is outside the confidence interval. On average, partici-
pants’ performance is significantly3⁰ larger than their confidence interval in all but the
prospective condition with a high cost of time. However, participants’ mean distance from
the closest confidence bounds is between -1 and +3 percentage points.

Overall, we conclude that the estimated performance function from stage one is a rea-
sonable approximation of roughly 70% of participants’ performance in stage four. Thus,
in 30% of the decisions in stage four, our structural performance estimate based on the

30 Using t-test of the mean being equal to 0. See Figure A1 for the p-values.
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Figure A2. Time decisions

data from stage one does not predict performance well. Importantly, we find that changes
in participants’ self-reported effort intensity do not correlate significantly with the time
decisions. Therefore, while performance, and thus our estimates of the structurally esti-
mated benchmarks, might be slightly biased, the reduced-form analysis of the selected
time seems largely unaffected.
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A.2 Additional Figures and Tables
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Notes: Panel A shows the empirical cumulative distribution function (ECDF) of mean performance for all participants.
Colors indicate the fixed times in part 1 of the experiment. Panel B shows the ECDF of the mean beliefs, and Panel C
the ECDF of the normalized certainty equivalents. The circles indicate the mean of the respective ECDFs.

Figure A3. Empirical cumulative distribution functions

Time Choice

Payo�

Uncertainty Aversion

Overconfidence

Performance

High first

Notes: This graph shows the path analysis model graphically. The arrows indicate the direction of the relationship.
Estimated intercepts and variances are not displayed. The two endogenous variables Time and Payo� are on the right
side of the graph, and the exogenous variables High first, Performance, Overconfidence, and Uncertainty Aversion on
the left.

Figure A4. Symbolic representation of path analysis model
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Notes: All four panels plot participants’ standardized time choices against the structural predictions for the rational
and behavioral time choice, as well as Pearson’s correlation coe�cients between the structural estimates and the
actual time choices in a restricted sample (prospective low: n = 67; high: n = 67, simultaneous low: n = 45; high: n =
65). The top row plots the results in the prospective decision environment and the bottom row in the simultaneous
environment; the left column contains the results for the high cost-of-time and the left for the low cost-of-time.
The di�erences in the correlations are statistically insignificant for the two prospective environments (Low cost-of-
time; William’s test: p = 0.78; high: p = 0.38). The di�erences in the correlations are significant for the simultaneous
environment (low cost-of-time: p < 0.001; high: p < 0.001).

Figure A5. Rational and behavioral time choice - restricted
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Notes: All four panels plot participants’ standardized time choices against the structural predictions for the rational
and behavioral time choice, as well as Pearson’s correlation coe�cients between the structural estimates and the
actual time choices. The top row plots the results in the prospective decision environment and the bottom row in
the simultaneous environment; the left column contains the results for the high cost-of-time and the left for the low
cost-of-time. The di�erences in the correlations are statistically insignificant for the two prospective environments
(Low cost-of-time; William’s test: p = 0.49; high: p = 0.28). The di�erences in the correlations are significant for the
simultaneous environment (low cost-of-time: p < 0.001; high: p = 0.003). n = 86 in all panels.

Figure A6. Rational and behavioral time choice
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“rational time choice” uses the predicted performance at the predicted rational time choice; the “behavioral time
choice” the predicted behavioral time choice and predicted performance. Points represent the mean, and whiskers
the 95% confidence interval of the mean.

Figure A7. Payo�
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Table A2. Time choice and individual characteristics

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.252** -0.543** -0.397*** -0.054 0.093 0.019
(0.096) (0.241) (0.131) (0.087) (0.160) (0.100)

Average Uncertainty Aversion (10pp.) 0.127* 0.309* 0.218** 0.001 -0.114 -0.057
(0.064) (0.157) (0.086) (0.052) (0.110) (0.068)

Average Performance (10pp.) -0.094 -0.450*** -0.272*** -0.351*** -0.583*** -0.467***
(0.082) (0.148) (0.088) (0.062) (0.122) (0.076)

GPS Risk -0.099 -0.110 -0.104 -0.045 0.005 -0.020
(0.066) (0.115) (0.067) (0.046) (0.100) (0.059)

GPS Patience -0.028 -0.039 -0.033 -0.047 -0.005 -0.026
(0.058) (0.091) (0.057) (0.042) (0.083) (0.051)

Fatigue -0.012 -0.011 -0.012 0.000 -0.034 -0.017
(0.022) (0.037) (0.024) (0.015) (0.027) (0.017)

Intensive Work anticipated -0.013 0.001 -0.006 -0.031 0.023 -0.004
(0.133) (0.214) (0.138) (0.095) (0.160) (0.111)

Time Pressure 0.000 -0.002 -0.001 -0.002 -0.003 -0.002
(0.002) (0.004) (0.003) (0.002) (0.004) (0.002)

Competition 0.055 0.096 0.075 -0.003 0.022 0.010
(0.064) (0.111) (0.069) (0.047) (0.081) (0.053)

Female 0.149 -0.070 0.040 0.048 0.003 0.026
(0.156) (0.229) (0.151) (0.110) (0.162) (0.110)

Age -0.033 -0.065 -0.049** -0.009 -0.001 -0.005
(0.020) (0.041) (0.024) (0.016) (0.028) (0.019)

High first -0.114 -0.336 -0.225* -0.073 -0.101 -0.087
(0.115) (0.209) (0.130) (0.096) (0.142) (0.102)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.061 0.191 0.575 0.371 0.389 0.697

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Average Performance is the average performance, GPS Risk, GPS Patience, Fatigue, Intensive

Work anticipated, Time Pressure, Competition, Female, and Age the individual survey measures elicited in stage 5,
Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for the order of the two cost-of-
time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A3. Time choice with individual performance

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.291*** -0.489** -0.390*** -0.041 0.153 0.056
(0.100) (0.225) (0.128) (0.074) (0.135) (0.087)

Average Uncertainty Aversion (10pp.) 0.134** 0.294** 0.214*** 0.004 -0.129 -0.063
(0.051) (0.145) (0.080) (0.047) (0.089) (0.059)

Performance in 2 sec. -1.510* -2.118 -1.814** -1.844** -1.660 -1.752**
(0.838) (1.381) (0.873) (0.765) (1.103) (0.809)

Performance in 3 sec. 0.653 0.507 0.580 -0.449 -1.411 -0.930
(0.742) (1.098) (0.740) (0.777) (1.193) (0.838)

Performance in 4 sec. -0.492 -1.768 -1.130 -1.041 -2.996*** -2.018***
(0.847) (1.412) (0.853) (0.718) (1.133) (0.771)

Performance in 5 sec. 0.933 0.486 0.709 0.182 1.390 0.786
(1.072) (1.875) (1.231) (0.878) (1.264) (0.927)

Performance in 6 sec. -1.655 -2.190 -1.922 -0.387 -0.282 -0.334
(1.234) (2.349) (1.470) (1.076) (1.568) (1.147)

High first -0.034 -0.264 -0.149 -0.033 -0.033 -0.033
(0.113) (0.181) (0.116) (0.092) (0.142) (0.103)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R

2
Adj. 0.072 0.196 0.575 0.410 0.457 0.706

Notes:Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Performance in X sec. is the average performance in X seconds, Low time cost is a dummy
for the low cost-of-time condition, High first is a dummy for the order of the two cost-of-time conditions. (10pp.)

indicates that a unit change in the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A4. Time choice and performance estimates

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.300*** -0.516** -0.408*** -0.065 0.091 0.013
(0.082) (0.240) (0.131) (0.087) (0.150) (0.101)

Average Uncertainty Aversion (10pp.) 0.152*** 0.309** 0.230*** 0.007 -0.134 -0.064
(0.045) (0.146) (0.078) (0.052) (0.098) (0.066)

Performance: Steepness 0.099 0.547*** 0.323*** 0.477*** 0.843*** 0.660***
(0.096) (0.206) (0.118) (0.125) (0.194) (0.143)

Performance: Asymptotic level -2.635** -3.687 -3.161** -2.041*** -1.570 -1.805**
(1.137) (2.610) (1.527) (0.717) (1.221) (0.783)

Performance: X-axis onset 0.514*** 1.127*** 0.821*** 0.709*** 1.106*** 0.907***
(0.194) (0.398) (0.239) (0.176) (0.224) (0.175)

High first -0.066 -0.276 -0.171 -0.028 -0.045 -0.036
(0.105) (0.179) (0.116) (0.091) (0.137) (0.102)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R

2
Adj. 0.129 0.214 0.579 0.343 0.414 0.697

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Steepness Perf., Asymptotic level Perf., and X-axis onset Perf. are the three estimated parame-
ters from the performance fit,Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for
the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10
percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A5. E�ects of overconfidence and uncertainty aversion on time decisions and payo�s

Prospective Simultaneous

High Low High Low

(1) (2) (3) (4)

Regression Slopes
Time Choice

Average Overconfidence (10pp.) -0.26∗∗∗ -0.48∗∗ -0.06 0.08
(0.09) (0.24) (0.08) (0.14)

Average Uncertainty Aversion (10pp.) 0.11∗∗ 0.27∗∗ 0.00 -0.11
(0.05) (0.14) (0.04) (0.08)

Average Performance (10pp.) -0.14∗∗ -0.45∗∗∗ -0.37∗∗∗ -0.61∗∗∗

(0.06) (0.10) (0.06) (0.09)
High first -0.02 -0.25 -0.03 -0.09

(0.10) (0.17) (0.08) (0.13)

Payo�

Time Choice -7.29∗∗∗ -0.39 -11.20∗∗∗ -0.84
(1.19) (1.37) (1.13) (1.46)

Average Overconfidence (10pp.) 0.91 -1.41 0.49 1.53
(1.12) (1.92) (0.94) (2.09)

Average Uncertainty Aversion (10pp.) 0.15 -0.06 -0.49 -1.07
(0.63) (1.20) (0.40) (1.26)

Average Performance (10pp.) 6.27∗∗∗ 9.02∗∗∗ 5.37∗∗∗ 8.49∗∗∗

(0.73) (1.40) (0.64) (1.59)
High first -0.96 -3.58∗∗ 0.05 -0.15

(1.03) (1.76) (0.88) (1.83)

Intercepts

Time Choice 4.32∗∗∗ 7.60∗∗∗ 5.77∗∗∗ 8.27∗∗∗

(0.38) (0.68) (0.38) (0.62)
Payo� 11.56 28.24∗∗ 34.37∗∗∗ 35.77∗∗

(7.23) (13.53) (6.70) (15.66)

Indirect E�ects on Payo�

Average Overconfidence (10pp.) 1.91∗∗ 0.18 0.69 -0.06
(0.76) (0.72) (0.89) (0.28)

Average Uncertainty Aversion (10pp.) -0.83∗∗ -0.11 -0.04 0.10
(0.40) (0.38) (0.49) (0.22)

Average Performance (10pp.) 1.04∗∗ 0.17 4.19∗∗∗ 0.51
(0.45) (0.61) (0.72) (0.91)

Total E�ects on Payo�s

Average Overconfidence (10pp.) 2.82∗∗ -1.22 1.18 1.47
(1.16) (1.94) (1.41) (2.07)

Average Uncertainty Aversion (10pp.) -0.68 -0.17 -0.53 -0.98
(0.66) (1.21) (0.60) (1.24)

Average Performance (10pp.) 7.31∗∗∗ 9.19∗∗∗ 9.56∗∗∗ 9.00∗∗∗

(0.91) (1.21) (0.80) (1.17)
CFI 1.00 1.00 1.00 1.00
TLI 1.00 1.00 1.00 1.00
RMSEA 0.00 0.00 0.00 0.00

Notes: Path analysis estimated by maximum likelihood. The recursive fully specified
and thus just-identified model has two endogenous variables: time choice and pay-

o�. Time choice has a dual role and is allowed to have an e�ect on payo�. Payo� is
the average payo� for each participant calculated based on their time choice and
performance in the respective tasks in stage five. The exogenous variables are Av-

erage Uncertainty Aversion and Average Overconfidence as described in Section 4,
Average Performance as the average performance, High first is a dummy for the or-
der of the two cost-of-time conditions. (10pp.) indicates that a unit change in the
variable corresponds to a 10 percentage points change. Bootstrapped (n = 1000)
standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.0148



Table A6. Time choices in the simultaneous condition

Rounds 1 - 10 Round 1 Round 10

Linear models Panel Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cost of time High Low Both High Low Both High Low Both

Average Overconfidence (10pp.) 0.033 -0.012 0.018 0.066 0.146 0.113 -0.119 -0.022 -0.063
(0.052) (0.090) (0.113) (0.100) (0.208) (0.142) (0.132) (0.149) (0.131)

Average Uncertainty Aversion (10pp.) 0.026 0.016 -0.034 0.051 -0.092 -0.076 0.096 -0.070 -0.042
(0.032) (0.063) (0.077) (0.067) (0.134) (0.095) (0.073) (0.085) (0.082)

Average Performance (10pp.) -0.001 -0.064 -0.523*** 0.021 0.006 -0.477*** -0.009 -0.103 -0.547***
(0.030) (0.058) (0.082) (0.072) (0.132) (0.101) (0.082) (0.098) (0.092)

High first 0.033 0.215** 0.060 0.034 0.251 0.078 -0.215* 0.221 -0.061
(0.051) (0.088) (0.115) (0.130) (0.209) (0.153) (0.126) (0.171) (0.141)

Low time cost 1.042*** 0.680*** 0.928***
(0.073) (0.122) (0.125)

Random E�ects Yes Yes Yes
Unique Obs 91 91 91 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182 91 91 182
R

2
Adj. 0.004 0.041 0.593 -0.019 -0.012 0.248 0.018 -0.002 0.343

Notes: Linear OLS regressions in columns 1,2,4,5,7 and 8. Random e�ects panel models in columns 3, 6 and 9. The dependent variable is the
mean submission time in the first 10 rounds (columns 1-3), the submission time in round 1 (columns 4-6), and the submission time in round 10
(columns 7-9) in the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual
level) standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures described in Section 4,
Average Performance is the average performance, Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for the
order of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a ten percentage points change. *
p < 0.1, ** p < 0.05, *** p < 0.01
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Table A7. Time choice: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.340*** -0.619* -0.480*** -0.049 0.038 -0.005
(0.119) (0.331) (0.176) (0.075) (0.127) (0.084)

Average Uncertainty Aversion (10pp.) 0.084 0.225 0.155* 0.004 -0.114 -0.055
(0.052) (0.142) (0.081) (0.046) (0.089) (0.061)

Average Performance (10pp.) -0.139** -0.447*** -0.293*** -0.372*** -0.606*** -0.489***
(0.059) (0.106) (0.065) (0.058) (0.093) (0.068)

High first -0.027 -0.256 -0.141 -0.042 -0.095 -0.068
(0.103) (0.175) (0.116) (0.084) (0.133) (0.097)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.107 0.238 0.581 0.398 0.426 0.702

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective condition and the average submission time in the simultaneous
condition. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Average Performance is the average performance, Low time cost is a dummy for the low cost-
of-time condition, High first is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit
change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A8. Time choice and individual characteristics: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.336*** -0.690** -0.513*** -0.033 0.045 0.006
(0.118) (0.315) (0.162) (0.082) (0.156) (0.095)

Average Uncertainty Aversion (10pp.) 0.095 0.249 0.172** 0.003 -0.117 -0.057
(0.064) (0.153) (0.083) (0.053) (0.113) (0.070)

Average Performance (10pp.) -0.092 -0.447*** -0.269*** -0.346*** -0.583*** -0.464***
(0.079) (0.145) (0.086) (0.064) (0.120) (0.075)

GPS Risk -0.095 -0.102 -0.098 -0.047 0.006 -0.021
(0.065) (0.115) (0.066) (0.047) (0.102) (0.060)

GPS Patience -0.013 -0.015 -0.014 -0.044 0.005 -0.020
(0.059) (0.088) (0.055) (0.043) (0.083) (0.052)

Fatigue -0.011 -0.007 -0.009 -0.001 -0.035 -0.018
(0.020) (0.035) (0.022) (0.015) (0.025) (0.017)

Intensive Work anticipated 0.000 0.024 0.012 -0.034 0.029 -0.003
(0.131) (0.214) (0.137) (0.096) (0.162) (0.112)

Time Pressure 0.000 -0.002 -0.001 -0.002 -0.003 -0.002
(0.002) (0.004) (0.002) (0.002) (0.003) (0.002)

Competition 0.045 0.077 0.061 -0.002 0.023 0.010
(0.061) (0.107) (0.066) (0.048) (0.081) (0.053)

Female 0.138 -0.085 0.027 0.051 -0.008 0.021
(0.149) (0.223) (0.146) (0.111) (0.162) (0.111)

Age -0.034* -0.067* -0.051** -0.008 -0.002 -0.005
(0.020) (0.039) (0.023) (0.016) (0.028) (0.019)

High first -0.111 -0.330 -0.220* -0.080 -0.095 -0.087
(0.111) (0.210) (0.129) (0.095) (0.141) (0.100)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.104 0.228 0.582 0.367 0.391 0.697

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Average Performance is the average performance, GPS Risk, GPS Patience, Fatigue, Intensive

Work anticipated, Time Pressure, Competition, Female, and Age the individual survey measures elicited in stage 5,
Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for the order of the two cost-of-
time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A9. Time choice with individual performance: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.361*** -0.629** -0.495*** -0.033 0.097 0.032
(0.108) (0.312) (0.159) (0.067) (0.122) (0.077)

Average Uncertainty Aversion (10pp.) 0.103** 0.244* 0.174** 0.004 -0.126 -0.061
(0.051) (0.146) (0.080) (0.049) (0.092) (0.062)

Performance in 2 sec. -1.539* -2.157 -1.848** -1.853** -1.668 -1.760**
(0.818) (1.440) (0.885) (0.762) (1.103) (0.809)

Performance in 3 sec. 0.534 0.285 0.410 -0.443 -1.441 -0.942
(0.711) (1.155) (0.731) (0.776) (1.197) (0.839)

Performance in 4 sec. -0.332 -1.428 -0.880 -1.064 -2.903** -1.984**
(0.810) (1.447) (0.849) (0.706) (1.139) (0.767)

Performance in 5 sec. 0.865 0.372 0.618 0.176 1.412 0.794
(1.012) (1.835) (1.179) (0.874) (1.266) (0.926)

Performance in 6 sec. -1.529 -2.153 -1.841 -0.313 -0.433 -0.373
(1.119) (2.368) (1.438) (1.035) (1.523) (1.097)

High first -0.041 -0.268 -0.155 -0.037 -0.027 -0.032
(0.109) (0.177) (0.112) (0.091) (0.141) (0.101)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R

2
Adj. 0.113 0.223 0.581 0.409 0.456 0.706

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Performance in X sec. is the average performance in X seconds, Low time cost is a dummy
for the low cost-of-time condition, High first is a dummy for the order of the two cost-of-time conditions. (10pp.)

indicates that a unit change in the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A10. Time choice and performance estimates: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.365*** -0.647** -0.506*** -0.051 0.047 -0.002
(0.098) (0.324) (0.163) (0.081) (0.129) (0.089)

Average Uncertainty Aversion (10pp.) 0.126*** 0.261* 0.194** 0.007 -0.140 -0.066
(0.047) (0.148) (0.078) (0.055) (0.103) (0.071)

Performance: Steepness 0.098 0.550*** 0.324*** 0.473*** 0.843*** 0.658***
(0.094) (0.207) (0.118) (0.126) (0.194) (0.143)

Performance: Asymptotic level -2.444** -3.390 -2.917* -2.004*** -1.443 -1.723**
(1.108) (2.567) (1.491) (0.724) (1.225) (0.786)

Performance: X-axis onset 0.511*** 1.126*** 0.819*** 0.706*** 1.095*** 0.901***
(0.184) (0.387) (0.229) (0.176) (0.229) (0.178)

High first -0.069 -0.273 -0.171 -0.035 -0.042 -0.039
(0.101) (0.175) (0.112) (0.089) (0.136) (0.100)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R

2
Adj. 0.163 0.242 0.585 0.339 0.417 0.697

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Steepness Perf., Asymptotic level Perf., and X-axis onset Perf. are the three estimated parame-
ters from the performance fit,Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for
the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10
percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A11. Time choices: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.235*** -0.502* -0.369*** -0.028 0.058 0.015
(0.070) (0.261) (0.128) (0.058) (0.100) (0.067)

Average Uncertainty Aversion (10pp.) 0.075 0.179 0.127 0.000 -0.132 -0.066
(0.053) (0.141) (0.081) (0.045) (0.088) (0.060)

Average Performance (10pp.) -0.132** -0.433*** -0.283*** -0.369*** -0.597*** -0.483***
(0.058) (0.102) (0.063) (0.058) (0.093) (0.068)

High first -0.038 -0.268 -0.153 -0.044 -0.097 -0.070
(0.103) (0.173) (0.114) (0.083) (0.130) (0.095)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.092 0.257 0.583 0.397 0.435 0.703

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Average Performance is the average performance, Low time cost is a dummy for the low cost-
of-time condition, High first is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit
change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A12. Time choices and individual characteristics: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.230*** -0.541** -0.386*** -0.019 0.064 0.023
(0.077) (0.246) (0.116) (0.064) (0.130) (0.078)

Average Uncertainty Aversion (10pp.) 0.087 0.200 0.144* -0.003 -0.141 -0.072
(0.066) (0.156) (0.085) (0.052) (0.115) (0.070)

Average Performance (10pp.) -0.084 -0.432*** -0.258*** -0.344*** -0.575*** -0.460***
(0.080) (0.144) (0.086) (0.064) (0.120) (0.075)

GPS Risk -0.098 -0.103 -0.100 -0.047 0.008 -0.020
(0.065) (0.116) (0.066) (0.047) (0.100) (0.059)

GPS Patience -0.012 -0.005 -0.009 -0.044 0.006 -0.019
(0.060) (0.083) (0.053) (0.042) (0.082) (0.051)

Fatigue -0.010 -0.003 -0.007 -0.001 -0.033 -0.017
(0.021) (0.035) (0.022) (0.015) (0.025) (0.017)

Intensive Work anticipated -0.016 0.003 -0.006 -0.034 0.031 -0.002
(0.131) (0.219) (0.139) (0.096) (0.163) (0.113)

Time Pressure 0.000 -0.003 -0.002 -0.002 -0.003 -0.003
(0.002) (0.004) (0.002) (0.002) (0.003) (0.002)

Competition 0.046 0.072 0.059 -0.003 0.022 0.009
(0.062) (0.107) (0.066) (0.047) (0.080) (0.053)

Female 0.146 -0.084 0.031 0.051 -0.010 0.020
(0.150) (0.226) (0.148) (0.110) (0.162) (0.110)

Age -0.031 -0.061 -0.046* -0.007 0.001 -0.003
(0.020) (0.041) (0.024) (0.017) (0.028) (0.019)

High first -0.122 -0.341 -0.231* -0.081 -0.096 -0.089
(0.112) (0.212) (0.130) (0.094) (0.141) (0.100)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.084 0.241 0.582 0.368 0.402 0.698

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Average Performance is the average performance, GPS Risk, GPS Patience, Fatigue, Intensive

Work anticipated, Time Pressure, Competition, Female, and Age the individual survey measures elicited in stage 5,
Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for the order of the two cost-of-
time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A13. Time choice with individual performance: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.270*** -0.542** -0.406*** -0.019 0.097 0.039
(0.068) (0.265) (0.127) (0.056) (0.098) (0.064)

Average Uncertainty Aversion (10pp.) 0.095* 0.203 0.149* 0.004 -0.131 -0.064
(0.051) (0.145) (0.080) (0.050) (0.093) (0.062)

Performance in 2 sec. -1.601* -2.270 -1.936** -1.858** -1.667 -1.762**
(0.833) (1.439) (0.885) (0.766) (1.117) (0.817)

Performance in 3 sec. 0.603 0.308 0.456 -0.431 -1.448 -0.940
(0.699) (1.200) (0.748) (0.781) (1.222) (0.851)

Performance in 4 sec. -0.210 -0.997 -0.604 -1.063 -2.736** -1.900**
(0.855) (1.439) (0.848) (0.757) (1.204) (0.827)

Performance in 5 sec. 0.936 0.493 0.715 0.182 1.394 0.788
(1.025) (1.765) (1.148) (0.879) (1.268) (0.929)

Performance in 6 sec. -1.794 -2.811 -2.302 -0.327 -0.623 -0.475
(1.152) (2.327) (1.411) (1.094) (1.606) (1.162)

High first -0.056 -0.288 -0.172 -0.039 -0.031 -0.035
(0.108) (0.173) (0.108) (0.090) (0.141) (0.101)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R

2
Adj. 0.106 0.247 0.584 0.408 0.459 0.706

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Performance in X sec. is the average performance in X seconds, Low time cost is a dummy
for the low cost-of-time condition, High first is a dummy for the order of the two cost-of-time conditions. (10pp.)

indicates that a unit change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p < 0.05, ***
p < 0.01
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Table A14. Time choice and performance estimates: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both

Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overconfidence (10pp.) -0.280*** -0.540** -0.410*** -0.030 0.084 0.027
(0.062) (0.262) (0.125) (0.065) (0.113) (0.076)

Average Uncertainty Aversion (10pp.) 0.113** 0.216 0.165** 0.004 -0.148 -0.072
(0.047) (0.146) (0.078) (0.052) (0.100) (0.068)

Performance: Steepness 0.085 0.527** 0.306*** 0.470*** 0.829*** 0.649***
(0.093) (0.204) (0.115) (0.125) (0.192) (0.142)

Performance: Asymptotic level -2.610** -3.609 -3.110** -2.035*** -1.602 -1.819**
(1.183) (2.719) (1.563) (0.736) (1.110) (0.756)

Performance: X-axis onset 0.496*** 1.090*** 0.793*** 0.701*** 1.066*** 0.883***
(0.183) (0.372) (0.218) (0.177) (0.233) (0.179)

High first -0.082 -0.289* -0.186* -0.038 -0.050 -0.044
(0.099) (0.172) (0.108) (0.088) (0.134) (0.098)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R

2
Adj. 0.160 0.261 0.587 0.339 0.421 0.698

Notes: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The depen-
dent variable is the time selected in the prospective environment and the mean submission time in the simultaneous
environment. Heteroscedasticity robust standard errors for the linear models and clustered (on the individual level)
standard errors in the panel models. Average Uncertainty Aversion and Average Overconfidence are the measures
described in Section 4, Steepness Perf., Asymptotic level Perf., and X-axis onset Perf. are the three estimated parame-
ters from the performance fit,Low time cost is a dummy for the low cost-of-time condition, High first is a dummy for
the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10
percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01

Table A15. Comparison of time choices

Cost of Time Environment
Time Choice Behavioral ∆t

Time

Behavioral Rational ∆t
Time

Rational

mean sd mean sd mean sd mean sd mean sd

High
Prospective 3.40 (0.50)

2.90 (0.53)
0.50 (0.61)

2.87 (0.18)
0.53 (0.50)

Simultaneous 3.37 (0.48) 0.47 (0.64) 0.50 (0.41)

Low
Prospective 4.57 (0.83)

4.80 (0.94)
-0.24 (1.02)

4.93 (0.50)
-0.36 (0.85)

Simultaneous 4.35 (0.79) -0.45 (1.16) -0.57 (0.60)

Notes: This table shows the average time choices, the predicted behavioral and rational actions, and the distance between
participants’ average time choice and the rational and behavioral action. Data restricted to 87 participants with convergence in
the MLE estimation of the uncertainty weighting function.
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A.3 Additional Theory

A.3.1 Uniqueness of the Maximum at t∗. To proof that t∗ is unique, start with the objective
function and the reward function:

t∗ = argmaxtΠ(t) = p(t)y(t)

y(t) =

¨

Y − c(t) if task is solved correctly and Y > c(t)

0 otherwise
We define tb as t where Y = c(t) and t0 as t where t= 0. Thus [t0, tb] is the relevant interval
for the maximization problem.
We assume that performance p(t) and the cost of time c(t) are positive, concave, and
increasing functions, i.e.,

p(t) > 0, p′(t) > 0, p′′(t) ≤ 0, ∀t ∈ [t0, tb]

c(t) > 0, c′(t) > 0, c′′(t) ≤ 0, ∀t ∈ [t0, tb]

Thus, the overall reward function y(t) is characterized by:

y(t) > 0, y′(t) < 0, y′′(t) ≤ 0, ∀t ∈ [t0, tb]

To determine whether Π(t) has a unique maximum, we make the following observations

• p(t), y(t) are non-negative in [t0, tb]

• p(t0)= 0 and y(tb)= 0 =⇒ p(t0)y(t0)= p(tb)y(tb)

• p′(t)y′(t)< 0 in [t0, tb].

We can then apply Rolle’s theorem since Π(t0)=Π(tb), which states that there exists at
least one stationary point tstat, where Π′(tstat)= 0.
The necessary condition for tstat to be a maximum is that Π′′(tstat)< 0. The second deriva-
tive

Π′′(t) = p′′(t)y(t) + 2p′(t)y′(t) + p(t)y′′(t)

is negative in [t0, tb], since p′′(t)y(t)≤ 0, p′(t)y′(t)< 0 and p(t)y′′(t)≤ 0. Thus we have a
local maximum at tstat. This maximum is a unique maximum since Π′′(t)y(t)≤ 0 every-
where in [t0, tb], and Π(t) is thus a concave function which can only have one unique
maximum. Thus, the maximum at tstat is a unique global maximum, which we call t∗.

A.3.2 Generality of Predictions 1-4. In this section, we discuss the generality of predic-
tions 1-4, while relying on the assumptions from Section ref{sec:appendix_unique}.
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Prediction 1. We define argmaxtΠ1(t)= t∗1 and argmaxtΠ2(t)= t∗2 and investigate if
t∗1 < t∗2 when c1(t)> c2(t) ∀ t.
We rewrite

c1(t) = c2(t) + dc(t)

where dc(t)> 0 ∀ t describes the difference between the two cost functions. This implies
that

Π1(t) = p(t)(m − c2(t)) and Π2(t) = p(t)(m − (c2(t) + dc(t))

combining the two yields

Π1(t) −Π2(t) = −p(t)dc(t)

and taking the first derivative with respect to t

Π′1(t) = Π′2(t) − (p(t)dc(t))′

t∗1 < t∗2 requires the first derivative Π′1(t) evaluated at t∗2 to be negative (as both t∗1 and t∗2
are unique (see proof above)) and thus

Π′2(t∗2) − p′(t∗2)dc(t∗2) − p(t∗2)d′c(t∗2) < 0 (8)

By definition Π′2(t∗2)= 0, such that the inequality reduces to p′(t∗2)dc(t∗2)> −p(t∗2)d′c(t∗2).
Remember that by definition p(t)> 0, p′(t)> 0, and d(t)> 0. Therefore, the inequality
is true in the following three cases:

1. if d′c(t∗2)> 0. This is the case where the change in the difference between cost condi-
tions evaluated at t∗2 is positive, i.e., where c1(t∗2) and c2(t∗2) “drift apart”.

2. if d′c(t∗2)= 0. This is the case when the difference between the cost conditions does
not change at t∗2.

3. if d′c(t∗2)< 0 and p′(t∗2)
p(t∗2) > −

d′c(t∗2)
dc(t∗2) . This means that the (normalized) increase in perfor-

mance at t∗2 is still larger than the decrease in the cost conditions. Intuitively, this
condition implies that the rate of change in the difference between the cost function
is not more extreme that the rate of increase in performance.

In the case of linear cost functions (i.e., as implemented in the experiment), Prediction
1 applies as d′c(t)> 0 ∀ t.
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Prediction 2. We again define argmaxtΠi(t)= t∗i and argmaxtΠj(t)= t∗j and discuss if
t∗i < t∗j when pi(t)> pj(t) ∀ t.
Prediction 2 implies that

Πi(t) = (p(t) + dp(t))(m − c(t)) = Πj(t) + dp(t)(m − c(t))

and thus,

Π′i(t) = Π′j(t) + (dp(t)(m − c(t))′

t∗i < t∗j requires the first derivative Π′i(t) evaluated at t∗j to be negative. This implies the
inequality d′p(t∗j )

dp(t∗j ) <
c′(t∗j )

m−c(t∗j ) . This inequality is satisfied in the following three cases:

1. d′p(t∗j )< 0 (difference between performance shrinks),
2. d′p(t∗j )= 0 (constant) and
3. d′p(t∗j )> 0 and c′(t∗j )

m−c(t∗j ) >
d′p(t∗j )

dp(t∗j )

If we assume the functional form proposed for performance in this experiment (equa-
tion 5), and that differences in performance originate in a shift in α (x-axis onset), i.e.,
holding steepness and asymptotic level constant, we define:

d(t) = β
�

1 − e−(t−α)/λ
�

− β
�

1 − e−(t−(α+ζ))/λ
�

where ζ is the shift in the x-axis onset. Then the first derivative is clearly negative, i.e.

d′(t) = −
β
�

eζ/λ − 1
�

e(α−t)/λ

λ
< 0

Prediction 3-4. We combine the discussions of predictions 3 and 4, which are similar
to the previous discussion in Prediction 2. We define
argmaxtΠ

b(t)= tb and argmaxtΠ(t)= t∗ and discuss if tb < t∗ when w(b(t))> p(t) ∀ t.
The relevant inequality is

Πb(t)′ = Π′(t) + (db(t)(m − c(t))′

where db(t)= w(b(t))− p(t) and db(t)> 0 ∀ t.
This inequality is satisfied once:

1. db(t∗)′ < 0 (difference between subjective performance shrinks),
2. db(t∗)′ = 0 (constant) and
3. db(t∗)′ > 0 and c′(t∗)

m−c(t∗) >
db(t∗)′

db(t∗)
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We assume that db(t) is similar to dp(t), i.e., that behavioral differences between agents
originate in a constant shift of the subjective performance function. In this case, the
prediction holds. For more complex functional form assumptions (e.g., as in equations 6
and 7), the assessment of cases 1-3 strongly depends on the chosen parameter values.
Overall, we thus conclude that predictions 1 and 2 generally hold for the linear cost func-
tion in this experiment and the proposed functional form for performance. Predictions 3
and 4 hold in case of certain restrictions on the functional form, but alternative functional
forms and certain parameter values might generate opposite predictions.

A.4 Task Generation and Sampling

The tables for the tasks are generated to have similar difficulty across all stages. All
participants see the same tables; however, when the tasks are presented within one stage
is different for participants. The general procedure to sample the number in the matrix
for a single task is as follows:

1. a solution between 41 and 90 is randomly chosen with a uniform probability
2. 15 other numbers are randomly chosen without replacement from the interval
[solution− 31, solution− 1].

Thus, the non-solution numbers are always within a close range of the solution, en-
suring similar difficulty across all tasks. Additionally, all numbers have double digits.

Stage 1: 250 tasks. In the main task, 250 tables are generated, with 50 tables for each
of the fixed times (2,3,4,5,6 seconds). All possible solutions from the interval 41, 90 are
used for each fixed time. This ensures that the distribution of solutions is the same across
all possible fixed time settings. The order of the tables in the blocks is randomized, so all
participants see the same tables for each fixed time but in a different order.

Stage 3: 50 tasks. In the implementation of stage 2, the endogenous choice of reward
schemes determines the number of tables that participants have to solve. Since we were
not interested in comparing performance across the different reward schemes, we gen-
erated 50 tables, one for each possible solution. The order (and thus assignment to the
times) is randomized. Participants thus see different tables for different times.

Stage 4: 160 tasks. For stage four, we need 40 tasks for each cost of time and choice
environment combination. We generate tables similar to stage 1. However, we only sam-
pled 40 solutions instead of all 50. Thus, the tables have similar difficulty to stage 1,
as deterministically changing either the upper or lower interval and applying any other
deterministic rule to select the solutions could have resulted in a biased performance
estimate. All participants see the same 40 tables within a single environment but in a
different order.
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A.5 Maximum Likelihood Estimation

In this section, we provide more details on the maximum likelihood estimation of the
structural parameters of equations 5, 6 and 7, i.e., of performance, beliefs and uncer-
tainty attitudes. We follow the approach outlined in von Gaudecker et al. (2022).

Performance. To obtain the structural parameter of the performance function, we de-
fine the following model

p(t) = β(1 − e−(t−α)/λ)

εP ∼ N
�

0,σ2
εP

�

Pr(µt) = Pr
�

p(t) + εP

�

where µt is the observed proportion of correct solutions in stage one in a given time
t ∀ t and εP, a new parameter, describes the variance of the error terms between pre-
dicted and empirically observed performance. We choose parameters θP :=

�

β ,α,λ,σεP

�

to maximize the likelihood
L (θP) =

∏

Pr
�

p(t) + εP;θP

�

(9)

s.t. 0 ≤ β ≤ 1,0 ≤ α,0 ≤ λ
where 0≤ β ≤ 1 avoids that the optimization leads to an unrealistic result, i.e.,

asymptotic levels of the time-dependent performance above 1.

Subjective Beliefs. For the beliefs data, we formulate the following model

b(t) =
δB
bp(t)γ

B

δB
bp(t)γB + (1 − bp(t))γB

εB ∼ N
�

0,σ2
εB

�

Pr(µ̃t) = Pr
�

b(t) + εB

�

where µ̃t is the mean of the observed belief distribution about the proportion of
correct solution in stage one in a given time t ∀ t and εB now describes the variance
of the error terms between predicted and empirically observed mean beliefs. bp(t) is the
individually-estimated performance ∀ t based on the parameters obtained in equation
9. We choose parameters θB :=

�

δB,γB,σεB

�

to maximize the likelihood
L (θB) =

∏

Pr
�

b(t) + εB;θB

�

(10)

s.t. 0 ≤ δB ≤ 5,0 ≤ γB ≤ 5

Again, instead of allowing for any value of δB, γB, we chose to restrict the parameters
to be within a reasonable range and estimate the parameters for which the data of the
participants is most likely. As visible in Figure 5, the parameter restrictions of equation
10 were binding for only one individual.
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Uncertainty Attitudes. Lastly, for the uncertainty attitudes, we define the following
model

w(bb(t)) =
δW
bb(t)γ

W

δWbb(t)γW + (1 − bb(t))γW

εW ∼ N
�

0,σ2
εW

�

Pr(NCEt) = Pr
�

w(bb(t)) + εW

�

where NCEt is the observed normalized certainty equivalent for a given time t ∀ t

and εW now describes the variance of the error terms between predicted and empiri-
cally observed NCE. bb(t) is the individually-estimated belief ∀ t based on the parameters
obtained in equation 10. We choose parameters θW :=

�

δW,γW,σεW

�

to maximize the
likelihood

L (θW) =
∏

Pr
�

w(bb(t)) + εW;θW

�

(11)

s.t. 0 ≤ δW ≤ 5,0 ≤ γW ≤ 5

Again, we chose to restrict the parameters, which was binding for 5 individuals (see
Figure 6).
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We would like to welcome you to the study. Thank you for your participation. 
 
All of the information you have provided is treated as confidential and 
not passed on to third parties. Furthermore, the leaders of the study are not able to match 
your answers to your identity. The data are used exclusively for scientific purposes. 
 
During this study you can make money, depending on your answers. Therefore, it is very 
important that you read the explanations very carefully. In case you have any difficulties in 
understanding the instructions, please feel free to write a chat message to the study 
director. We will explain to you beforehand exactly what the study looks like. 
 
During the study you are not allowed to communicate with other participants or use your 
mobile phone. In addition, we would like to point out that you may only use the functions on 
the computer that are intended for the course of the study. Not following these rules will 
result in exclusion from the study and all payments. 
 
Please note that you can only complete today's study after all study participants have 
reached the end of the study. After this you will receive an overview of your payout and an 
explicit request to leave the room and collect your payment. 
 
 

Payment 
 
For arriving punctually for the study, you will receive a separate participation fee of 5.00€. 
In addition to this, depending on your answers, you can still earn more money. The study is 
divided into several sections, within each of which you will have make several choices. In 
each of these sections, you can earn points based on your answers. These points are 
registered in your personal points account. Your private points account will be displayed at 
the end of this study. 
 
At the end of the study, the points you have earned are converted into euros, rounded to the 
nearest 10 cents and paid out to you in cash, for which the following rule applies 
 

1000 points = 2,00 Euro 
(100 points = 20 Cent). 

 
Throughout the following pages we will explain the exact nature of the study. 
 
 
Overview of today's study 
 
The study consists of several sections. At the beginning of a new section, you will see the 

General explanation about the study 

A.6 Experimental Material
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following STOP sign on your screen.  If you see the STOP sign on your screen, please read 
the instructions for the relevant section. If you have read and understood the instructions for 

the next section, please click on the "Next" (Weiter) button.  
 
If you have questions while reading the instructions or something is not clear to you, please 
click on the chat icon in the lower right corner of the screen. A window will open in which 
you can chat with the heads of the study and ask your questions. 
 
DANGER! Do not click on "Next" now, first read the general explanation and the explanations 
for the first exercise section. 
 
 

General explanations: Your answers 
In this experiment, you will make the same type of decision repeatedly, with a specific 
amount of time to make each decision. You have different amounts of time to make decisions 
in different parts of the study. At the beginning of each section, you will be given detailed 
information on the amount of time you will have on each specific question. 
 
A central component of this study are the so-called table questions: 
 

 
On every table question in this section your task is the following: 
 
Within the available time find the highest value in the table shown and click on it. 
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Exactly one of the 16 fields always contains the correct answer. You choose your answer by 
clicking on a box. Your currently selected answer will be highlighted in yellow. You can 
change your answer as often as you like until the time in which you have to complete the task 
has expired. The total time that you have for each answer is displayed at the top of the table 
screen and the remaining time is displayed as a running bar above the table. When the time 
for each task is over, your currently selected answer will be submitted. If you haven’t selected 
any field when the time has elapsed, your answer will be considered incorrect. After each 
table question there is an automatic short pause before the next screen is displayed. 
 
Your answer is correct if you clicked on the box with the highest number in the table before 
the time runs out. You will receive points for each correct answer. How many points you 
receive is shown in detail in the description for each individual section. Your task is to give as 
many correct answers as possible in order to earn as many points as possible. At the end of 
the study, you will receive feedback on how many table questions you solved correctly. 
 
Please note: You will see a new table on each table screen. All tables are the same size and 
appear in the same place on your screen. Each table contains 16 numbers between 10 and 90. 
Each number can only appear once within a single table. Each table will only appear once in 
this study. This means you won't see a table twice. 
 
To clarify the task with using an example: Look at the table below and think about what the 
correct solution is. 
 
 
 

 
 
 

 
 
 
 
 
 
 

In this case, the correct answer is "51" as this is the highest number in the table. Your task 
would be to find this number and click on the box marked with “51” before the time runs 

out. 

 

 

Practice section - practice rounds for the task 
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The study starts with an exercise section. This consists of an interactive example (phase 1) 
and a short exercise session (phase 2). The exercise section should make it easier for you to 
make the best possible decisions later. Please note the following: 
 

You cannot earn any points in the practice section. 
 
Practice Phase 1 is an interactive version of the example on page 3. Practice Phase 2 has a 
total of 3 rounds, each with 2 table questions. Here you should get to know the main task. 
Within one round you have the same amount of time to make a decision for each task. The 
remaining time is displayed as a running bar above the table. 
 
There is a short 10-second break between each lap to relax. During the break you will be 
shown how much time you have for each individual table screen in the following round. 
Before the first table question of any given round is shown, you will see a short countdown 
from 3. After that you will see a screen showing a cross for 4 seconds. This cross is right in 
the middle of the upcoming decision table. Move your mouse to the center of the cross to 
have a good starting position for the task at hand. 
 
Overview of exercise phase 2: 
 
 

Round  1 2 3 

Table questions  2 2 2 

Selection time in seconds 10 7 5 

 
If you have understood the instructions for the exercise section and you have no further 

questions, please press   to start the exercises. If you have any questions, please use 
the chat window. 
 

 
Section 1 - Description  
 
Section 1 is the first section where you can earn points. The tasks in section 1 are the same 
that we have just explained and that you learned about in the practice section. In Section 1, 
you will have to submit an answer for a total of 250 table questions. These 250 table 
questions are divided into 5 identical blocks. Each block contains 5 rounds and each 
individual round contains 10 tables. Below is a table that describes one of the 5 blocks in 
more detail. 
 
One block:  
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Round 1 2 3 4 5 

Table Screens 10 10 10 10 10 

Selectiontime in seconds 6 5 4 3 2 

 
 

Within each round you have the same amount of time to solve every single table screen: In 
the first round you solve 10 table questions while enjoying 6 seconds for each, in the second 
round you solve 10 table screens with only 5 seconds for each and so on. When a block ends, 
a new block begins. In this, you have 6 seconds each in the first lap. Before starting the first 
block, you will see a full overview of all 5 blocks and all laps in Section 1 on the screen. 

At the beginning of each new round you have a short break and the time of the next round is 
announced to you. You can take a longer break of up to 2 minutes between blocks. As in the 
exercise part, each new lap begins with a countdown and the cross on the screen, which 
should make it easier for you to find the center of the screen. 

 

Section 1 – Payout 
 

An important difference to the practice section is your payout. In Section 1, you can earn 
points with your answers. Your payout is calculated as follows: 
 
At the beginning of section 1, the computer will randomly select 30 percent (equivalent to 75 
table screens) of all 250 table screens for the payout. We call these 75 tables the payment-
relevant tables. Each of the 250 table screens has the same probability of being selected by 
the computer as relevant for payment. 
 
Neither the head of the study nor the study participant knows which tables are selected by 
the computer or can influence this decision. Of course, when you submit your answers for 
the table questions, you do not yet know which of the 75 payment tables are that will be 
chosen by chance. You should therefore solve each table as correctly as possible, since you 
have to assume that each one can be relevant for your payout. 
 
You will receive 100 points for each correctly completed payment-related table. These 
points will be credited directly to your points account. 
 
If you do not correctly solve a payment-related table, i.e., you have not selected a number or 
a number other than the highest when the time has elapsed, you will receive 0 points. Your 
payout for the 75 payment-relevant tables is summarized in the following table. 
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Payout for each correctly competed 
payment-related table 

Payout for each not correctly 
competed payment-related table 

100 points 0 points 
 
 
The payouts for a correctly and incorrectly answered payment-relevant table are shown again 
under each table on the table screen. So you do not yet know which of the tables are relevant 
to payment when you are editing. 
 
At the end of the study, we will tell you how many of the payment-related tables you have 
solved correctly and how many points you have thus earned in total in section 1 of the study. 
 
An example: 
Imagine you solved 180 of the 250 tables correctly. It so happens that you have solved 60 of 
the 75 payment-eligible tables randomly selected by the computer correctly. You would get 
100 points for each of the 60 payment-relevant tables. Your total payout for Section 1 of the 
study would be 100 * 60 = 6000 points. 
 
If you have understood the instructions for section 1 and you have no further questions, 

please click on   to start with section 1. If you have any questions, please use the 
chat. 

 

Section 2 - Description 
 

Section 2 consists of two phases. First, we will explain the second phase to you. 
 

Procedure phase 2 
In the second phase, you will make a decision for every 10 tables in 5 rounds. Your task is the 
same as in section 1. You must again identify the highest number on a table within the 
available decision time. Each round contains 10 tables with one of the decision timeframes 
already known to you (10 instances of 6 seconds, 10 of 5 seconds, 10 of 4 seconds, 10 of 3 
seconds and 10 of 2 seconds). Note that the order of the rounds (and thus the decision times) 
is now determined at random. 
 
Exemplary overview section 2 (phase 2): 
 
 
 
 
 

69



 7 

 
Round 1 2 3 4 5 

Table Screens 10 10 10 10 10 

Selectiontime in seconds  
(This random order is only used as an exaple) 

4 2 3 5 6 

 
 
 

Procedure phase 1 

 
In phase 1, your decisions will determine the payout for a correctly or incorrectly answered table 
in phase 2. For each of the 5 decision times in phase 2 (6 seconds, 5 seconds, 4 seconds, 3 
seconds and 2 seconds) you will fill out a so-called decision table. 
 
The decision table: 
In each decision table you make decisions for exactly one decision time. This is highlighted 
in yellow and displayed above each decision table (20 seconds in the example below). This is 
important to note because the order of the decision tables is determined at random, as is 
the order of the later rounds (see above for an example). 
 
Each decision table contains 21 decisions in 21 rows. In each row of the decision table you 
have to chose between two options. 
 
A decision table: 
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On the left-hand side of a decision table, the payout scheme A is in each row. This is identical 
to the payout scheme you have already seen in Section 1: In payout scheme A, you receive 
100 points for each correct answer on a table screen within the specified decision time (in 
the example 20 seconds). No answer or one wrong answer means 0 points. 
 
On the right side of the table you can see a fixed amount that increases by 5 points in each 
row. This is payout scheme B. In payout scheme B, you receive the number of points 
specified in the row for each table screen that you edit for the respective decision time (in the 
example 20 seconds), regardless of whether you answer correctly or incorrectly in the 
respective decision time. 
 
We assume that you prefer the left column (payout scheme A) at the beginning of each 
decision table, but that you want to switch to payout scheme B, i.e., the right column, from a 
certain point onwards. 
 
In order to make your decision for the respective decision time, please click on the right 
selection field at the point in which you would like to switch to payment scheme B or the left 
selection field if you prefer payment scheme A once more. All other lines are filled in 
automatically by the computer. You can adjust your decision at any time. When you have 
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finally made your decision, confirm your selection for this decision time by clicking on the 
"Next" button. 
 
After you have filled in all the decision tables, a row of the decision table is randomly selected by 
the computer for each decision time. Each row has the same probability of being selected by 
the computer. The computer then checks whether you have chosen payment scheme A or 
payment scheme B in the line drawn. Your decision in this line then determines the payout 
scheme for the 10 tables of the respective decision time in phase 2. If you have selected the 
left column (payout scheme A) in the drawn line, you will make a decision on 10 tables. With 
each correct answer 100 points are credited to your points account and 0 points for each 
incorrect answer. If you have opted for the right column (payment scheme B), however, you 
will also solve 10 tables, but you will receive the payment in the drawn line for each task, 
regardless of whether your answer is correct or incorrect. 
 
After you have completed all decision tables, you have completed phase 1 of this section and 
phase 2 follows. As already described, in phase 2 of this section you will be shown 10 tables 
per decision time (see page 7). As a result, for each decision time (6 seconds, 5 seconds, ..., 2 
seconds) you have to carefully consider which payment scheme (A or B) would be preferable. 

 

Section 2 – Payout 
 

 
As in Section 1, 30% of the tables from Section 2 are randomly selected as being payable. You 
will receive the payout according to the payout scheme you have chosen for this table. 
 
Two examples: 
 

• The computer has selected a table with a decision time of 5 seconds as relevant for 
payment. Assuming you had chosen payout scheme A here. This means that you will 
get 100 points if you have identified the correct answer in this table and 0 points if 
not. 
 
• In another table with 6 seconds that was randomly selected as being relevant for 
payment, however, you decided on payout scheme B. You will now receive the 
specified payout (number of points in the right column from the relevant row) 
regardless of whether you have identified the correct solution or not. 

 
A few practice questions at the beginning of Section 2 should help you determine whether 
you have understood the explanation for this section correctly. 
 
 
 

72



 10 

If you have understood the instructions for section 2 and you have no further questions, 

please click on   to start with section 2. If you have any questions, please use the 
chat. 
 

 

Section 3 - Description 
 

Section 3 consists of 3 phases. In phases 2 and 3 you will again make a decision on the tables 
already familiar to you. In section 3, you can now determine the decision time for all table 
screens yourself. 
 
 

Phase  Phase 1 Phase 2 Phase 3 
Number table screens _ 40 40 

Selectiontime 
in seconds 

_ determined in phase 1 own decision per 
table screen 

Payout for correctly 
competed table screens 

_ determined in phase 1 maximum 150, 
every second 

reduced by the 
exchange rate 

 
 

Procedure phase 1 and phase 2 

First we describe phase 1 of the third section: In this phase you plan the decision time for 
phase 2, in which you make another decision for 40 tables. Phase 1 and 2 are thus directly 
connected to each other. 

 

The planning of your decision time in phase 1 takes place on a time screen: 

 

The time screen: 

You will see a slider on the time screen. With the help of this slider you can choose between 
a longer decision time and a higher payout. There is an "exchange rate" between the decision 
time and the payout for a correct answer on a table screen. This means that the payout for a 
correctly solved table screen is reduced by the exchange rate for every additional second 
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of decision time you give yourself. You would get the maximum payout if you opted for a 0-
second decision time and managed to correctly solve the table screen in phase 2 in 0 seconds. 
The exact exchange rate will be given to you at the beginning of phase 1. 

 
 
 
 
 
Example for a time screen: 
 

 
 

 
In the first line you can see the exchange rate. In the example, this is 20 points per second. 
This means that for every second of decision time, the payout for a correctly solved table 
screen is reduced by 20 points. The maximum payout here is an example of 400 points. In this 
example, the exchange rate and the maximum possible payout result in a maximum possible 
decision time of 20 seconds. 
 
In the example, the slider is positioned so that 15.5 seconds is selected as the decision time. 
This reduces the payout for a correctly solved table from 400 points to 90 points. This means 
that there are 15.5 seconds of decision time for each of the 10 tables in phase 2 of the third 
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section. If the correct solution is selected and clicked within these 15.5 seconds, 90 points are 
earned in this example. If the answer is wrong, you earn 0 points. 
 
You can adjust the slider for selecting the decision time as often as you like. A click on the 
"Next" button confirms your entry. 
The time screen also offers the possibility to simulate the consequences of the selected 
decision time. It should help to get a feeling for how long the respective periods are. 
 
After you have made your decisions in phase 1, phase 2 follows. Here you will make a 
decision on 40 of the now-familiar tables. The decision time as well as the payout for a 
correctly solved table screen is the one that you set yourself in phase 1 using the slider. 
 

Procedure phase 3 

In the third phase, you will again make a decision on a total of 40 tables. Similar to phase 1, 
you also have a choice in phase 3 concerning the decision time and the maximum payout 
of the table screens. 

In phase 3, however, you do not plan in advance (as in phase 1), but rather you decide when 
you want to stop looking for the right solution while solving each table. The number of points 
that you can earn with your decisions on the table depends on how much time you take to 
make a decision on the respective table. The more time you spend on each screen, the fewer 
points you will earn with a correct answer. The exchange rate between the decision time and 
the payment for a correct answer is identical to phase 1. This means that the reward for a 
correct answer is reduced by the exchange rate for every second in which you search for a 
solution. 

Below you can see an example of a table screen from Section 3. With the exception of 2 
differences, this is exactly the same as in all previous sections of the experiment. 
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Tables in section 3: 

 

 

 

The first difference concerns the time display. In phase 3, the points you can earn with a 
correct answer depend directly on how much time you take to make your decision. Therefore, 
the time display has been replaced by a point display. The points display always shows you 
exactly how many points you would get if you made your decision at exactly this point in time 
and your answer was correct. If your answer is not correct, you will receive 0 points as before. 
How many points you get for a correct answer is shown below the table again. The value 
below the table shows how many points you will receive if you make your decision at that very 
moment. 

In the example on page 13, the maximum payout is 150 points. On the sample screen, time 
has already been spent looking for the right solution. For a correct solution you would receive 
92.5 points in the example if you identified the correct solution at exactly this point in time 
and transmitted it to the computer. 

 

The second difference to the previous table screens is that you have to confirm your answer 
in phase 3. Only when you confirm your answer does the point display stop at its current 
value and your decision is transmitted to the computer. Choosing a number as an answer is 
initially the same as before: you click on the number that you want to choose. As before, this 
is highlighted in yellow. To confirm your answer, click the currently selected number 

76



 14 

again. The second click on a number confirms it, the decision time is stopped and your 
decision and the current decision time are transmitted to the computer. 

 

You can change your decision by clicking on another unselected solution until the time has 
run out or you have confirmed an answer. At the beginning of phase 3, you can familiarize 
yourself with the changed procedure (display of points; confirmation of the answer) in a few 
rounds of practice. For practice purposes, the maximum reward and exchange rate are 
identical to phase 1 (and phase 3). The display below the table shows the current values for 
practice purposes, but these are shown in gray to indicate that you cannot earn any money 
in the practice rounds. 

 

 

Section 3 – Payout 
 
The payout in section 3 follows a similar principle as in section 1. The computer will randomly 
select for the payout 30 percent out of the 40 tables from phase 2 and the 40 table screens from 
phase 3. These are the tables relevant to payment. Each of the 40 tables has an equal chance 
of being selected by the computer. 
 
In phase 2 you will receive the number of points for each correctly solved payment-relevant 
table that you have set yourself on your time screen. In phase 3 you will receive the number 
of points for each correctly resolved payment-relevant table that was displayed on the 
points display at the time of your confirmed decision. 
 
Overview payout section 3: 
 
 

Phase:  2 3 
payment-relevant tables 

12 of 40 12 of 40 

Payout for each correctly 
solved payment-relevant 
table: 

Set by your choices 
on the time screen 

Points displayed on the 
scoreboard at the time you 

confirm your decision 
Payout for each NOT 
correctly solved payment-
relevant table: 

0 points 0 points 

 
 
Please note: After phases 1, 2, and 3, the entire section 3 is repeated again. This means that 
you will be going through all of the stages in Section 3 all over again. These are phases 4 to 6. 
These phases are exactly the same as phases 1 to 3. Only the exchange rate will be different 
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in the second run of section 3. We will inform you of the exchange rate at the beginning of 
phase 4. You can earn money in phases 4 to 6 in the same way as in the first run of the third 
section. The instructions are therefore identical and you have another opportunity to earn 
points for your points account. 
 
If you have understood the instructions for section 3 and you have no further questions, 

please click on   to start with section 3. If you have any questions, please use the 
chat. 
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A.6.2 On-screen instructions for the belief elicitation. This part of the study is about estimating as accu-
rately as possible how many table screens you have solved correctly. Please read this page very carefully.

The screen on which you will submit your estimate of how many tasks you solved correctly looks like this:

— screenshot of empty task here —

The decision time for which you should provide an estimate is displayed at the top of the page (in this example 20 seconds)
and highlighted in yellow. The example above thus relates to an estimate of the number of correctly solved tables in 20 seconds.

As a reminder: in the last section, you encountered 50 tasks for each decision time.
You will provide your assessment for each decision time individually as follows:
The decision screen has 10 columns. Each column represents a certain number of correctly solved tables. The first column

represents 0-5 correctly solved tables, the second column represents 6-10 correctly solved tables, and the last column represents
46-50 correctly solved tables.

Your task now is to distribute 100 balls in these columns. Each ball represents 1% probability. For example, if you
put 50 balls in the second column, this means that you assume that you have correctly solved between 6 and 10 of the total of 50
tables with a probability of 50% within the time indicated above the table. If, for example, you place 23 balls in the ninth column,
this means that you assume with a probability of 23% that you have correctly solved between 41 and 45 of the total 50 tables. The
more likely you think it is that a column contains the number of tables you solved correctly, the more balls you should
place in that column.

To place balls in a column, please enter the corresponding number in the input field above the column or click on the column.
At the bottom left, you will see the number of remaining balls to be distributed among the columns. You can change the number of
balls in a column until you press the “Next” button.

The task is finished when you have distributed exactly 100 balls among the 10 columns and are satisfied with the resulting
probability distribution. This means that the distribution of balls in the columns reflects your estimation of how many tables you
solved correctly. If this is the case, then press the “Next” button at the bottom left.

Overall, the more accurate your estimate - that is, the more balls you have placed in the correct column and the
fewer balls you have placed in the columns that do not apply - the more likely you are to win the 250 points.

(Only) For those who are interested in the exact payout scheme: After you have distributed all 100 balls in the 10 columns,
a number A is calculated as follows:

A =
10
∑

i=1

(Balls in columni − 100 × Ii)
2,

where i=1, .. .10 denotes the different columns and Ii is equal to 1 for the column containing the number of table screens
actually solved correctly and 0 otherwise. Thus, the larger the number A, the more your estimate deviates from the correctly solved
table screens.

Then a number X is randomly drawn from the interval [0,20,000]. If A< X, you get the additional 250 points. If A> X, you will
not get any additional points.
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Figure A8. Belief elicitation

A.6.3 Experimental screenshots.
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Figure A9. Uncertanty aversion elicitation
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Figure A10. Screenshot: task to measure reaction time

Figure A11. Screenshot: fixation cross at beginning of task
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